
Developing and Evaluating the Code Bubbles Metaphor

ABSTRACT
Today’s integrated development environments (IDEs) are ham-
pered by their dependence on files and file-based editing. A novel
user interface that is based on collections of lightweight editable
fragments, called bubbles, which when grouped together form
concurrently visible working sets is proposed. An overview of this
interface, as well as a summary of the results of a quantitative and
a qualitative evaluation of the interface is presented.

1. INTRODUCTION
Programmers spend between 60-90% of their time reading and
navigating code and other data sources [1]. Programmers form
working sets of one or more fragments corresponding to places of
interest [2]; with larger code bases, these fragments are scattered
across multiple methods in multiple classes – forming a working
set, comprising the context of an activity. Viewing these frag-
ments concurrently is likely to be beneficial, as it has been shown
that concurrent views should be used for tasks in which visual
comparisons must be made between parts that have greater com-
plexity than can be held in limited working memory [3].

Because contemporary integrated development environments
(IDEs) are file-based it is difficult to create and maintain a view in
which multiple fragments are visible concurrently. This requires
the programmer to manually and repeatedly perform numerous
interactions to place, resize, scroll, and reflow a different file win-
dow for each fragment. Instead, IDEs are optimized for switching
among different views using tabs, forward/back buttons, etc. Per-
haps as a result, programmers may spend on average 35% of their
time in IDEs actively navigating among working set fragments
[2], since they can only easily see one or two fragments at a time.

I argue in favor of a new approach, where the IDE shows multiple
editable fragments concurrently, letting the user see and work
with complete working sets. The result reduces navigations and
supports new higher-level interactions over and within the work-
ing set. The approach is founded on the metaphor of a bubble – a
fully editable and interactive view of a fragment such as a func-
tion, method documentation, or debugging display. Bubbles, in
contrast to windows, have minimal border decoration, avoid clip-
ping their contents by using automatic code reflow and elision,
and do not overlap but instead push each other out of the way.
Bubbles exist in a large virtual space where a cluster of bubbles
comprises a concurrently visible working set. Code Bubbles and
two accompanying user studies are fully described in [4] [5].

2. RELATED WORK
The work closest to the bubbles approach let the programmer
work in terms of program fragments. These efforts let the pro-
grammer edit in terms of individual functions, or similar units.
This was the approach taken in Desert [6] and also in IBM’s Vis-
ual Age environments [7] and in the Sheets environment [8]. All
these were loosely based on non-file based programming languag-
es such as Xerox’s Smalltalk and its successors, various versions

of Lisp, and visual languages such as NI’s LabView. JASPER
displays small read-only views that represent the user’s current
task as a means for navigation [9]. A number of tools have been
developed to add navigation aids to file-based environments, e.g.
Mylar [10]; these tools focus on identifying working sets, whereas
this work focuses on displaying working sets concurrently.

3. FORMATIVE STUDY
Early in the design process, I sought to determine whether users
perceived value in a fragments-based approach to reading and
editing code, and to gain qualitative feedback into using existing
approaches – tiled panes in Eclipse 3.4.2. and overlapping child
windows in Visual Studio 2008’s multiple document interface
(MDI) mode – for seeing methods side-by-side. Five professional
developers in the Providence, RI area were recruited via web ads.

Overall, developers thought it was very helpful to have multiple
methods side-by-side, but felt it was prohibitively difficult to
achieve this result for more than 2-3 functions using tab panes or
MDI. They wanted the system to help reduce or eliminate the
tedious and repetitive operations needed to create such working
sets. They did not like having to manually drag, scroll, rearrange,
apply code formatting commands, and resize panes/windows, with
one developer comparing it to a “jigsaw puzzle”, and although
they liked the free-form layout of MDI they did not like having to
manage which window was on top (Z-order) which was necessary
when using overlapping windows. We further observed in both
cases that once the screen had been filled, it became difficult for
developers to continue adding additional content, as this necessi-
tated tab switching within specific panes, or changing Z-order
with MDI.

4. THE BUBBLES METAPHOR
Based on the formative study, four significant problems with cur-
rent interfaces that make it difficult to create side-by-side views of
code were identified, that a novel interface would need to address.
Steps taken to address these issues are summarized from [4]:

File-based views are often large, requiring multiple interaction
steps to concisely display a single method: A popup search box
opens a relevant method in a bubble in a single step.

Code contains significant white space and does not readily fit in a
compact view: To ensure that code can be easily read and edited
regardless of the dimensions of its bubble, bubbles never clip text
horizontally, but instead automatically reflow long lines, similar
to the way a programmer would manually wrap long lines. To
handle long functions, vertical elision is used to collapse blocks.

To further conserve space and reduce distraction, bubbles have
minimal chrome/border decoration; instead, programmers interact
using the right, middle and left buttons respectively to move, close
or edit text within bubbles. A breadcrumb bar indicates the parent
package and class, and can also be used to access peer methods.

Modifying a layout of panes or windows takes multiple interaction
steps: Bubbles do not overlap but instead push each other out of
the way, making groups of bubbles easier to read since no Z-order
management is needed. When one bubble is moved on top of
another, a bubble spacer automatically moves the overlapped
bubbles out of the way using a simple, recursive, heuristic algo-
rithm that minimizes the total movement of bubbles.

Window layouts are generally limited by the size of the screen:
Bubbles exist in a large, continuously pannable 2-D virtual space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

Andrew Bragdon
Brown University, Department of Computer Science

acb@cs.brown.edu

525

Building on this core design, many extensions were made to build
the Code Bubbles IDE interface around the concept of working
sets [4] [5] (see Figure 1), including: supporting additional tasks
such as editing, performing reference searches, building heteroge-
neous working sets with different bubble types, lightweight per-
sistent bubble groups, supporting interruption recovery and multi-
tasking through a workspace bar, a breakpoint debugger based on
bubbles, a channels interface for working with multiple debugging
sessions simultaneously, and tools for annotating and sharing
working sets.

5. QUANTITATIVE EVALUATION
To evaluate the performance of the Code Bubbles user interface
for reading code, we compared it with the Eclipse IDE [4]. 20 3rd
and 4th year undergraduate as well as graduate students were re-
cruited from Brown University’s computer science program
(which uses Eclipse and Java in the majority of classes) to partici-
pate. Participants were randomly assigned to Eclipse or Code
Bubbles conditions, between-subjects. After an introduction to the
respective system, participants were given a warm-up task (not
counted), and two code understanding tasks. Participants were
given up to 45 minutes to complete each task, and for each task
were asked to fix a bug by reading and understanding the code
(they were not permitted to use a debugger or trace statements).

Code Bubbles users saw a significantly lower overall task comple-
tion time than Eclipse users (33.2%), and successfully completed
significantly more tasks. In addition, Code Bubbles users per-
formed significantly fewer navigations per minute (46.6%), sig-
nificantly fewer repeated navigations (50.5%), and spent signifi-
cantly less time navigating (68.6%). Surprisingly, the reduction in
navigation time, Δtnav accounted for only one third of the total
reduction in task completion time Δt, experienced by Code Bub-
bles users; I hypothesize that the remaining time, Δtcog, which
accounted for the bulk of the improved performance, can be attri-
buted to the limited nature of human working memory, and fur-
ther that Code Bubbles users were able to offload their limited
working memory onto working sets in Code Bubbles. This may
have helped them perform several important activities more easi-
ly, including: remembering context, comparing and referring back
to methods, and re-finding methods when needed – above and
beyond reducing navigations.

6. QUALITATIVE EVALUATION
A qualitative study of the overall system was also conducted with
23 professional developers, recruited via Facebook.com ads, with
an average of approximately 10 years of industry experience [5].

Developers were introduced to the system and asked to think
aloud as they completed six development tasks.

On the whole, developers expressed a high level of interest, ex-
citement and a range of ideas on how they might use the system.
This was a surprising result, given the limitations of the prototype,
the radical change from what developers are used to, and the level
of experience of the participants. We believe this indicates that
developers perceive significant value in a working set-based user
interface paradigm for IDEs. The use of a working set-based user
interface paradigm in Code Bubbles appears to have changed the
cost structure of using working sets to aid in completing tasks;
developers did not have to explicitly create a working set from
scratch to use one, rather they “get it for free” as part of their
normal workflow. As a result, annotation tools such as groups,
flags, notes, connections, etc. are always available, making them
something developers could count on regardless of task. This
change in cost structure appeared to allow working sets to be em-
ployed more often, which has the potential to benefit a wide range
of development tasks.

7. ACKNOWLEDGMENTS
The author wishes to thank Andries van Dam, Steven P. Reiss and
Ken Hinckley for their advice and insight. This material is based
upon work supported under a NSF Graduate Research Fellowship.

8. REFERENCES
[1] Erlikh, L. Leveraging Legacy System Dollars for E-Business. IT Pro,
May/June (2000), 17-23.
[2] Ko, A. J., Myers, B. A. et al. An Exploratory Study of How Developers
Seek, Relate, and Collect Relevant Information during Software Maintenance
Tasks. IEEE TSE, 32, 12 (December 2006), 971-987.
[3] Plumlee, M. D. and Ware, C. Zooming versus multiple window interfaces:
Cognitive costs of visual comparisons. ACM Transactions on Computer-
Human Interaction, 13, 2 (June 2006), 179-209.
[4] Bragdon, A., Zeleznik, R., Reiss, S. P. et al. Code Bubbles: A Working Set-
based Interface for Code Understanding and Maintenance. In Proc. of CHI
2010.
[5] Bragdon, A., Reiss, S. P., Zeleznik, R. et al. Code Bubbles: Rethinking the
User Interface Paradigm of Integrated Development Environments. In
Proceedings of ICSE 2010.
[6] Reiss, Steven P. The Desert environment. ToSEM, 8, 4 (1999), 297-342.
[7] Nackman, L. R. An overview of Montana. IBM Research (1996).
[8] Stockton, R. and Kramer, N. The Sheets hypercode editor. 1993.
[9] Coblenz, M., Ko, A., and Myers, B. JASPER: an Eclipse plug-in to
facilitate software maintenance tasks. In OOPSLA Workshop on Eclipse
Technology (2006), 65-69.
[10] Kersten, M. and Murphy, G. C. Mylar: a degree-of-interest model for
IDEs. In AOSD '05 (2005), 1590168.

Figure 1.
The Code Bubbles IDE. Resolution: 1920x1200
(space reserved for taskbar).

(A) The workspace bar used for navigating the
workspace, (B) a user‐defined task section in the
workspace, (C) a bug bubble, (D) a note bubble,
(E) a named group of bubbles, (F) a bubble stack
showing the results of a Find All References
search with (G) a result expanded as a bubble,
(H) the package explorer, (I) a Javadoc bubble,
(J) a visual flag bubble, (K) a code bubble show‐
ing a function, with long lines reflowed, (L) open‐
ing the definition of a function call, (M) a bubble
connection, (N) the popup search box with (O) a
result highlighted and (P) hover‐preview of that
function, (Q) the 2‐D workspace.

526

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Andrew Bragdon
