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ABSTRACT 
GestureBar is a novel, approachable UI for learning gest-
ural interactions that enables a walk-up-and-use experience 
which is in the same class as standard menu and toolbar 
interfaces.  GestureBar leverages the familiar, clean look of 
a common toolbar, but in place of executing commands, 
richly discloses how to execute commands with gestures, 
through animated images, detail tips and an out-of-
document practice area. GestureBar’s simple design is also 
general enough for use with any recognition technique and 
for integration with standard, non-gestural UI components.  
We evaluate GestureBar in a formal experiment showing 
that users can perform complex, ecologically valid tasks in 
a purely gestural system without training, introduction, or 
prior gesture experience when using GestureBar, discover-
ing and learning a high percentage of the gestures needed to 
perform the tasks optimally, and significantly outperform-
ing a state of the art crib sheet.  The relative contribution of 
the major design elements of GestureBar is also explored.  
A second experiment shows that GestureBar is preferred to 
a basic crib sheet and two enhanced crib sheet variations. 
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INTRODUCTION 
High quality pen-based hardware devices have become in-
creasingly available at successively lower cost.  However, 
companion gestural UIs have gained little traction despite 
their strong value proposition: gestural commands physical-
ly chunk a command and its operands into a single action 
[4], and different commands can be intermingled without an 
explicit mode switch, for example, to enable transparent 

transitions between drawing, moving and erasing [26]. Ges-
tures can also be committed to physical muscle memory 
which can help users focus on their task instead of the UI. 
The HCI community has a long history of developing ges-
tural UIs which demonstrate this value, going back to [5]. 
Why then, do most applications forgo the potential of ges-
tures, relying instead on conventional WIMP paradigms, 
such as menus and toolbars?  We believe the basis for an 
answer lies in the refrain we commonly encounter when 
pitching gestural applications to software industry leaders: 
“this is great, but how will new users learn these gestures?” 

 

Figure 1.  GestureBar after clicking Delete.  Commands are 
not executed when clicked; rather the Gesture Explorer drop-
down displays an illustrative animation with detail tips, a re-
play button, a text description and a practice area. 

We interpreted this concern broadly to mean that the re-
search challenge for making gestural UIs mainstream is 
approachability, the summative experience of a first-time 
novice who attempts to accomplish a non-trivial, ecologi-
cally valid task, without human assistance, training or in-
troduction. Thus, instead of concentrating on performance 
and retention metrics which apply more to users who have 
adopted a gestural UI, our primary focus is on developing 
and evaluating techniques that facilitate the acceptance of a 
gestural UI by a novice – someone assumed to be unfami-
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liar with the fundamental gesture notion – that “drawing” 
something can specify operands and execute a command. 

Our approach, GestureBar (see Figure 1), embeds gesture 
disclosure information in a familiar toolbar-based UI.  Us-
ers encounter relevant gesture details only as needed, after 
they have formed a mental goal, searched for, and found an 
appropriate command – consistent with Polson, et al.’s CE+ 
model of novice behavior [22]. When a tool is clicked, Ges-
tureBar displays feedback that richly discloses information 
about the gesture, and provides an area in which to experi-
ment without impact on the user’s document.  Note that 
clicking an item does NOT execute the command, but ra-
ther discloses the gesture, and how to perform it. 

In this paper, we explore the hypothesis that gestural inter-
faces can be approachable – supporting a walk-up-and-use 
experience. First we discuss the evolution of GestureBar 
from a set of design principles and prototypes. We then pre-
sent two user studies, conducted in the context of a full ges-
tural application, to test our hypothesis and yield insight 
into the relative merits of our major design elements. 

RELATED WORK 
Gestural UI research spans a broad set of topics, including: 
creating gesture sets [16] [12], disclosing gestural functions 
and teaching individual gestures [15] [3], recognizing indi-
vidual gestures [25] [23], and correcting recognition results 
[17] [14]. Although each of these areas influences the usa-
bility, our GestureBar work focuses specifically on novice 
approachability. We note that we are unaware of any prior 
evaluations that study the approachability of gestural UIs in 
which pure novices are given a full-scale gestural app-
lication but no a priori training or advice on its use.  

Prior gestural UIs have commonly treated gestures as an 
organizing principle in themselves which can compromise 
searchability. For example, crib sheets often display gesture 
sets as gesture-icon/command-name pairs in a two-column 
table (e.g., Mouse Gestures [20]), or a 2D grid (e.g., Graffiti 
[21]). Within this layout, gestures may be clustered alpha-
betically or according to the similarity of their functions [1]. 
Such crib sheets, although effective as reference guides, are 
generally complemented by additional novice training ma-
terial such as videos and interactive tutorials. The Graffiti 
gesture set [21] was a notable exception, as it was rapidly 
adopted by a broad base of users who had access only to a 
crib sheet. We believe Graffiti’s crib sheet was successful 
because it leveraged intimate a priori familiarity; its crib 
sheet may likely have been perceived as an organized col-
lective whole – the alphabet – instead of a cluttered set of 
gestural commands. Fluid Inking [27] treated gestures ana-
logously to command-key shortcuts by embedding their 
mnemonic description in a menu system. However, because 
both the mnemonic depiction of the gestures was crude and 
also non-gestural alternatives were available, this technique 
was not successful with novices. Grossman’s [7] work on 
accelerating the learning of hotkeys included a technique in 
which menu items were disabled, thus requiring users to 

learn and use associated hotkeys to execute commands; the 
technique was positively received by users and resulted in 
improved performance. Our work draws from this result 
and applies this basic design notion to the disclosure of 
gestures, as clicking GestureBar items does not execute 
commands, instead disclosing the appropriate gesture. 

InkSeine [10] presented a variation of the crib sheet theme 
in which gestures were shown in situ as highlighter annota-
tions over application widgets; the annotations could be 
toggled on and off with a button press. This technique was 
well suited toward disclosing simple gestures associated 
with explicit UI widgets. However, with only a few ges-
tures, the technique cluttered the workspace but did not 
provide support for accessing more detailed information 
about subtle or complex gestures or for displaying gestures 
that required a document context (e.g., a selection lasso). 

In addition to searchability problems, the iconic representa-
tions used in crib sheets are not always effective at express-
ing the essential characteristics of all gestures, including the 
context where they apply and possible gesture variations. 
Kurtenbach [15] explored extending crib sheets with anima-
tion to make gestures more learnable. In this system, press-
ing and holding within the document invoked a contextual 
crib sheet and pressing a crib sheet item presented a series 
of animations illustrating examples of the gesture within the 
active document. Users could then trace the gestures to de-
velop the physical skill required to perform the gesture cor-
rectly and execute the corresponding function. However, 
this system did not support demonstrations of geometrically 
parameterized gestures, did not have a mechanism for hig-
hlighting geometric gesture nuances, and did not support 
browsing through functions that required an existing con-
text unless the user had already created that context in their 
document. In addition, users needed a priori knowledge to 
know about the press‐and‐hold “gesture” to bring up the 
crib sheet and special, unmarked contexts like the margins 
of a page. Hinckley explored a related variant in which text 
prompts and traceable extensions were displayed when par-
tially-completed pigtail gestures had been entered [9].  

As an alternative to crib sheet organizations, marking me-
nus [24] and zone and polygon menus [28], are organized 
by the hierarchical, radial nature of the gestures they sup-
port.  Grossman, et al. extended the basic notion of marking 
menus to support a broader range of gestures with Hover-
Widgets [8] a technique which simultaneously depicts all 
available non-marking hover state gestures as paths emanat-
ing from a common starting point. Bau, et al. created a sim-
ilar technique, OctoPocus, that depicted gestures as colored 
trails emanating from a common starting point [3].  In ei-
ther case, users learn to perform a gesture by following its 
trail while receiving continuous feedback about their per-
formance – gesture trails are pruned or reinforced based on 
how closely the user follows that trail.  With all these tech-
niques, gesture labels are spatially arranged based on the 
geometry of their corresponding gesture which often results 
in related labels being spatially separated. Non-hierarchical 
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displays like OctoPocus and HoverWidgets also become 
cluttered as the number of gestures increases. Trail-based 
approaches also do not adapt well to many common gesture 
types (e.g., short taps, fast flicks, and spatially paramete-
rized gestures like lassos or drag-and-drop) and they cannot 
be used with all gesture recognizers, for instance those that 
do not provide incremental feedback. Color-blind users also 
may have difficulty interpreting OctoPocus’ color codings. 

A different approach to disclosing and teaching gestures is 
to make a clean separation between disclosure and invoca-
tion, such as with step-by-step training videos or interactive 
tutorials. Microsoft provides an interactive tutorial for users 
to experiment with Flicks and receive textual disclosure 
about what they did right and wrong. Forsberg, et al. ex-
plored an online guided tutorial, activated at any time by 
pressing a “Demo” button, in the Tablet PC Music Compo-
sition Tool [6]. This tutorial presented the gestures in the 
gesture set simultaneously as faded out annotations over a 
partly finished musical example; users could then trace any 
trail to finish that part of the score. However, these ap-
proaches come at a higher cost – they require a significant, 
upfront time and attention commitment from the user as 
well as additional production time by the system developer. 

Sketch-based UIs (e.g., [1][13][2]) attempt to recognize 
hand-drawn diagrams based on their visual appearance the 
way a human would.  In this sense, users have less of a 
need to explicitly learn a UI.  However, our work is still 
applicable to these systems since most novice users will not 
know all of what can be sketched (e.g., the symbol for di-
vorce in a family tree diagram [2]) or how to perform an 
abstract gestural command such as Zoom or Copy. 

GESTUREBAR DESIGN 

Design Principles 
We expanded Kurtenbach, et al.’s Learning-While-Doing-
Strategy [15] for self-disclosure by identifying four design 
principles that together affect application approachability: 

Familiarity:  UIs should conform to commonly held a pri-
ori knowledge and expectations, rather than requiring up-
front learning to get started. 

Searchability: Since a user’s first priority when using a new 
application is to find relevant commands, the UI must faci-
litate command browsing and identification. 

Expressivity:  Unlike traditional GUIs, gestural UIs must be 
capable of fully disclosing compound physical interactions 
that are recognized by complex algorithms.   

Low Cost:  UIs must be practical both for the system de-
signer and for the end user and be compatible with tradi-
tional UIs; they should not limit recognition technology, 
require programming effort beyond what is needed for 
standard UIs, or fundamentally alter user workflow. 

Prototype and Iterative Design 
We began the design process with a simple mockup, using 
Windows Presentation Foundation (WPF), designed to test 

the idea of leveraging the familiarity of the ubiquitous tool-
bar paradigm for gesture disclosure (see 1st iteration in Fig-
ure 2). Gestures were displayed as static images, each la-
beled with the appropriate command name, in a toolbar-like 
layout across the top of the screen.  However, on hover, the 
gesture icons were animated to demonstrate the dynamic 
nature of the gesture. Each animation was designed as a 
canonical example, showing appropriate context; a shape 
around which a selection lasso was being drawn, for in-
stance.  We tested the mockup on three users with no Tablet 
PC experience; they performed a series of command execu-
tion tasks (identical to those in Experiment 1, see below) in 
a think-aloud protocol. We found that the toolbar did not in 
fact look familiar to users who were accustomed to seeing 
icons that depict functionality – they fruitlessly looked for 
“standard” toolbar icons (e.g., Undo) while being contin-
uously interrupted by small, inscrutable gesture animations.  
In essence, the gesture animations were confusing since 
they confounded the natural function-browsing workflow. 

 

 

Figure 2.  Iterative design process: 1st iteration of GestureBar 
prototype (top left), 2nd iteration (top right), 3rd iteration (bot.) 

For our first real GestureBar prototype (see Figure 2, 2nd 
iteration), we changed the toolbar to display function icons 
which expand on hover to show a larger animated demon-
stration of the associated gesture. We performed an initial 
pilot test on three users who had never used Tablet PCs, 
with the same tasks as before, and found that although they      
were ultimately able to accomplish the tasks given to them, 
they experienced significant initial confusion.  They did not 
expect either the on-hover behavior, or the animation; and 
they were puzzled why commands were not executed when 
they tapped on the toolbar buttons. They also missed most 
or all of the animations since the animations played quickly 
and without an initial delay. In addition, they complained 
that the expanded hover animation area covered nearby 
buttons making it hard to see the commands they needed. 
We adjusted the toolbar to be more familiar by getting rid 
of hover animations and displaying instead a Gesture Ex-
plorer dropdown when a tool item was clicked (see Figure 
2, 3rd iteration).  The dropdown provided more room to 
show a large, clear animation without disrupting the search-
ing process or covering neighboring buttons, and is dis-
missed by clicking anywhere outside the dropdown or on a 
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close button. We also added a short “attention getting” in-
troductory animation (an expanding gray rectangle) prior to 
playing the gesture animation and we supported secondary 
animations, intended to disclose gesture variations that 
could be tap-activated. Another set of four pilot users in a 
third, identical pilot test indicated the toolbar was no longer 
confusing, but new problems had arisen. 

Our expectation that animations would clarify gestures was 
not fully supported. Users found the secondary animations 
to be useful, but visually overwhelming. In addition, we 
observed that animations did clarify directional require-
ments of gestures, but seemed to obscure geometric content. 
For example, our lasso gesture requires users to draw a loop 
enclosing the objects of interest that ends in a small tail, but 
users did not notice the tail and simply circled the objects of 
interest. As another example, a text gesture required an un-
derline terminating in a sharp upward hook to be drawn be-
low handwritten text, but many users overlooked the hook. 

We concluded that no single silver-bullet strategy was ex-
pressive enough to present all nuances of even simple ges-
tures, and that multiple strategies needed to be combined 
with careful attention to visual complexity.  In addition, we 
observed that as users underwent the trial-and-error muscle 
training process of performing gestures, they often ended 
up doing significant damage to their document as failed 
gesture recognition led to unexpected results such as stray 
lines and text, and unintended command invocation. 

Final Design 
To support command set scalability and infrequently used 
commands, we added tabs across the top of the GestureBar, 
similar to the Ribbon in Office 2007 [18], and we added 
toolbar items which directly execute functions instead of 
displaying gestures. Switching tabs allows users to easily 
browse for commands in a single place (no menus are 
needed for less-used commands), and related sets of com-
mands can now be grouped together.  We added labeled 
groups within each tab (similar to the Ribbon), for example, 
the drawing commands might be in one group, “Drawing” 
and the text commands might be in another group, “Text”.  
In addition, we added tooltips which display on hover, 
showing the command name and a brief description of its 
use. Finally, to reinforce awareness of which gesture was 
recognized, we gradually fade the corresponding toolbar 
icon in and out of the document at the end of each com-
pleted gesture, much like Windows Vista Flicks [19] and 
Bau, et al.’s display of command associations [3]. 

We made several improvements to the expressivity of the 
Gesture Explorer (see Figure 3). Tabs are provided for 
switching to related gesture variations so that each tab page 
can show a single animation at a larger size to accommo-
date the addition of pen sprites which “write” each stroke, 
highlighting movement to the starting location of the ges-
ture and transitions between segments of multi-stroke ges-
tures. We added a green dot to indicate the start of each 
stroke and salient textual detail tips which appear via fly-in 

animation – so as to draw attention to them – at the end of 
the demonstration animation. We also added a text descrip-
tion to each gesture demonstration that describes the com-
mand and gives an overview of how to perform the asso-
ciated gesture. 

 

    

Figure 3.   Usage scenario: hovering over AutoShape reveals a 
tooltip (top), clicking AutoShape opens the Gesture Explorer; 
Clicking the Thin Arrow tab displays an animation with detail 
tips (left); a successful gesture attempt in the practice area 
(center); user adds an arrow to their document (right). 

To facilitate muscle training without affecting the docu-
ment, we added a Practice Area that shows a semi-
transparent, static traceable overlay of the gesture, and ap-
plication content, where appropriate – for example, lasso 
select provides a square for the user to practice selecting. 
The Practice Area is an instance of the same WPF control 
as the application document which makes it easy to simu-
late the in-document recognition experience without fear of 
“messing up” the document.  We provide “Nice Job!” or 
“Not Quite Right” (see Figure 3) pass/fail notifications in 
response to a callback from the gesture recognizer.  If an 
executed gesture matches a set of success gestures, “Nice 
Job!” is displayed.  If a reported gesture is in a set of inter-
mediate actions, no result is shown, allowing users to com-
plete multi-stroke gestures. Finally, if a gesture is in neither 
set, “Not Quite Right” is displayed. Tapping this notifica-
tion resets the practice area for another attempt.  One can 
imagine proffering rich feedforward [3] and explanatory 
feedback about “why” a gesture failed, but this may have 
increased the implementation and design costs and imposed 
gesture class or recognition technology constraints. 

Content Development 
Distinct from the GestureBar design, is the development of 
application-specific content. Similar to WIMP menu/toolbar 
content, creating content for GestureBar does not involve 
writing code.  A developer specifies content values such as 
icons, text, and gesture strokes as WPF properties in a GUI 
editor; gesture demonstration animations are procedurally 
generated by GestureBar using WPF.  Developers must also 
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decide which gesture nuances need reinforcement with de-
tail tips; we were careful to provide no more than three such 
tips to eliminate clutter. In addition to actually specifying 
content, designers must also consider whether each gesture 
variant warrants special attention requiring its own com-
mand button (e.g., delete vs. clear all), and whether impor-
tant gesture sequences should be treated as a single com-
mand with its own button (e.g., writing formatted text). 
This distinction is particularly relevant for gestural systems 
which often rely on interaction strategies that may not be 
obvious given only isolated gesture descriptions. 

EVALUATION 
To evaluate the approachability of GestureBar, we opted to 
study the performance of an unassisted novice user in a 
complex “real” application with a range of gesture types.  
We felt that easier-to-control synthetic tests that artificially 
constrained user workflow would be inadequate to assess 
approachability.  We also implemented variant UIs to span 
the design space between GestureBar and a crib sheet so as 
to identify the relative value of our main design choices.  

 

Table 1.  Lineogrammer gesture set: a dot indicates where 
each gesture starts. Gesture variations not shown for brevity. 

Lineogrammer Context 
Our evaluations were conducted in terms of ecologically 
valid diagram replication tasks using Lineogrammer [26], a 
research system that we have developed for creating simple 
diagrams, that we feel is representative of a wider class of 
gestural applications.  As expected in a gestural application, 
unscripted and unanticipated actions can occur when users 
fail to perform gestures correctly or when gestures are mi-
srecognized.  In Lineogrammer, such errors typically gen-
erate stray lines or other geometry within the user’s docu-
ment. Thus we were able to observe the complete open-
ended process by which users approach an unknown inter-
face, including forming goals, searching for commands, 
performing gestures, and assessing results.   

Table 1 summarizes Lineogrammer’s gestures and notes 
additions made for the purpose of this study to increase the 
generality of the gesture set without violating the essential 

nature of the application. For example, Clipart gestures 
were added to represent two important classes of gestures, 
multi-stroke and mnemonic; the Polygon gesture was de-
signed as a stress test for learnability since its visual ap-
pearance and function are confounding. 

Conditions 
We chose to evaluate GestureBar (GBAR) relative to the 
status quo of a basic crib sheet (CRIB) similar to that used 
by the Mouse Gestures Add-on [1] to Firefox. This baseline 
is important because it presumably represents the problems 
of approachability that are perceived with gestural interfac-
es in general. By demonstrating a significant advantage of 
GBAR over crib sheets, we hope to persuade those who 
believe gestural UIs are inherently unapproachable that the 
problem may rather be a function of a particular UI style.   

 

 

Figure 4. CRIB: crib sheet displays generic usage text on click 
(top left); ANIM: displays animated demonstration on click 
(bot. left); EXPLOR: displays gesture explorer on click (right). 

During pilot testing we had to adapt our baseline from the 
basic crib sheet style used by Mouse Gestures to a crib 
sheet that displayed a tooltip (see CRIB in Figure 4) ex-
plaining the concept of a gesture and a crib sheet whenever 
the crib sheet was clicked on. This change was prompted by 
four pilot users of the basic crib sheet who were essentially 
unable to find or perform any gestures other than the impli-
cit line, polyline and rectangle gestures; instead they treated 
the crib sheet as a toolbar and repeatedly clicked on it to 
change modes only to find that nothing happened. We also 
eliminated the confound of scrolling within the basic crib 
sheet since it fit the height of the display of the Tablet PC. 
To gain perspective on the value of the major components 
of GBAR, we also tested two intermediate designs that 
blended GBAR features into the basic crib sheet. 

The first of these intermediate designs, ANIM, is the basic 
crib sheet extended with canonical animated demonstrations 
of the gestures in context (identical to the animation from 
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the GBAR design but without detail tips).  These demon-
strations were shown in a small window with replay and 
close buttons, in response to clicking on a crib sheet entry. 

The second of these intermediate designs, EXPLOR, is the 
same as ANIM but extended to show the full gesture ex-
plorer UI – including animation demonstrations, detail tips, 
a text description, and practice area. 

The content used in these three conditions – command 
names and groups, animations, Gesture Explorer design, 
etc. – was taken from GBAR except for the static gesture 
icons which used the Mouse Gestures ink style [1]. 

Experiments Overview 
We conducted two evaluations across our four condition 
set. First we performed a within-participants design to qua-
litatively assess which conditions the users liked, and what 
they liked about them. Then we used a between-participants 
design to quantitatively measure summative usability. 

EXPERIMENT 1 

Participants and Equipment 
We recruited 24 participants (20 male, 4 female, ages 19-
24) from the general student body of the University of Cen-
tral Florida.  Each participant was paid $15.  Participants 
were required to be able to operate a Tablet PC.  We adver-
tised the study widely to get a sample of participants with 
diverse backgrounds and levels of experience using com-
puters; 5 participants identified themselves as “Experts” in 
terms of computer expertise, the average rating across the 
participants was just above “Intermediate,” the middle of a 
5-point Likert scale.  3 participants had used a Tablet PC 
before, and 2 participants regularly used a Nintendo DS.  
All trials used an HP tc4400 Windows XP Tablet PC with 1 
GB of RAM, in slate configuration. 

Tasks 
We created four task sets, each comprised by an ordered 
sequence of tasks.  Each task required the use of a gesture; 
several examples are “make a medium-sized rectangle,” 
“zoom in on one of the circles,” “make a star autoshape in 
an unused portion of the screen.”  Each task set contained 
five gestures the user had not yet seen in a prior task set as 
well as several simple gestures (such as rectangles and 
squares) that the user had already seen.  Not all gestures 
were assigned to task sets; six gestures were used as distrac-
ter commands, so that there would always be commands the 
user was unfamiliar with and would have to search through, 
even if the user successfully executed every task set. 

Experimental Design 
We used a 4-factor within-participants design, with the fac-
tors being the 4 conditions (see above).  The condition or-
der was counterbalanced and randomized with one order 
per participant.  Each user performed one task set per con-
dition, with the same task set ordering for all users. 

Procedure 
Participants were read an introduction describing an over-
view of the tasks they would be doing.  Participants were 

asked to think-aloud, describing their thoughts and inten-
tions out loud as they performed each task.  Participants 
were told to go at their “normal working pace.”  Partici-
pants were told that the diagrams they created did not have 
to be “100% perfect” but to “do as well as you can.”  Be-
fore starting the experiment, the concept of a gestural com-
mand, and how to use one, was explained to each partici-
pant. Participants were also told that there would be a help 
system on the side of the screen that would show them how 
to perform the gestures, and that they would see four differ-
ent help systems.  In addition, participants were told that the 
person running the experiment would not answer questions 
about the software, but could clarify task descriptions. 

We felt that handling failed gesture attempts is an important 
usability aspect of any gestural system, and so coping with 
failed gesture attempts was left to the participants.  Some 
participants ignored the stray lines and geometry failed at-
tempts generated, while others sought to delete or undo it.  
As the purpose of the experiment was to collect qualitative 
feedback, we believe that this added significantly to the 
realism of using a variety of gesture disclosure interfaces. 

After the introduction, participants were randomly assigned 
an ordering of the conditions.  Users were then given one 
task set per condition.  Users were asked to perform each 
task from each task set sequentially.  If users made 10 or 
more failed gesture execution attempts, or if they said that 
they were stuck and wished to move on, they were given 
the option of continuing on to the next task.  To ensure par-
ticipants were aware of the change in conditions, before the 
start of tasks 2, 3, and 4, participants were told that the help 
system had changed and that clicking on it would produce a 
different result than before. A questionnaire was adminis-
tered at the end of the study to assess users’ overall expe-
rience using the conditions.  To help participants identify 
the conditions in the questionnaire, a color figure was pro-
vided showing screenshots of each condition, labeled ano-
nymously “Help System 1,” “Help System 2,” etc. 

Results 
Results from post-questionnaire data (see Figure 5) show 
there were significant differences in participants rating of 
each technique in terms of finding commands ( ߯32 ൌ 39.33, p 
< 0.05), learning commands ( ߯32 ൌ  22.33, p < 0.05) as well 
as which technique they preferred the most ( ߯32 ൌ 20.33, p < 
0.05) and the least ( ߯32 ൌ 64.33, p < 0.05). Participants also 
highly ranked, using a 5-point Likert scale where 1 is very 
negative and 5 is very positive, the animations (Mean = 
4.59, SD = 0.95), detailed fly-ins (Mean = 4.0, SD = 0.95) 
and the practice area (Mean = 4.27, SD = 0.83).  

The majority of the participants felt the GBAR made it eas-
ier for them to both find and learn commands.  Participants 
were split between GBAR and EXPLOR in terms of which 
technique they liked the best. Examining their responses as 
to why they chose a particular help system shows that the 
common thread among their responses was the usefulness 
of the animations, the practice area, and the detailed fly-ins 
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(supported by the Likert scale questions on each compo-
nent).  However, the distinguishing characteristic appears to 
be the layout of the help system as some participants felt 
that GBAR was a well organized approach to providing 
help learning gesture while others preferred the fact that 
EXPLOR was laid out all once and showed gesture exam-
ple icons.  CRIB was almost unanimously voted as the 
worst help system; participants remarked that it was very 
difficult to find things using it and that it really did not offer 
any help to learning and using the gestures.  Finally, overall 
comments regarding the four help systems indicated that 
several participants thought the organization found in 
GBAR was very helpful although they wanted the help to 
stay on when they needed it and to go away when they 
didn’t.  These comments suggest a hybrid approach of 
GBAR and EXPLOR is worthy of future investigation.  
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Figure 5.  Disclosure technique preferences of participants. 

EXPERIMENT 2 

Participants and Equipment 
The recruitment procedure and equipment was the same as 
for Experiment 1. We recruited 44 participants (27 male, 17 
female, ages 18-33) from the general student body of 
Brown University.  In addition, to ensure that users met our 
definition of novice, after a participant completed the expe-
riment, we read them a description of a pen gesture, and 
asked if they had ever encountered anything similar prior to 
the experiment; none had.  11 participants had used a Tablet 
PC before and 1 participant regularly used a Nintendo DS.  

Tasks 
We created four tasks for Experiment 2.  Tasks 1 and 2 
asked a participant to replicate a given diagram (see Figure 
6).  Tasks 3 and 4 asked participants to replicate a diagram 
and then to change it to look like another given diagram.   

Each task was designed so that there was a single, unique, 
optimal combination of gestures that would produce the 
highest quality result with the least effort.  Tasks were spe-
cifically designed to not require artistic ability.  Each task, 
to be done optimally, required learning a specific set of new 
gestures (the task learning set); we distributed the gestures 
in Lineogrammer evenly across each task, with six distrac-
ter gestures left unused.  Non-optimal methods, i.e. those 

which did not use, at a minimum, all of the gestures in the 
task learning set, were fundamentally worse than the optim-
al method; they typically required significantly more effort 
and produced an obviously substandard result. 

 

Figure 6.  Task 1 (left), task 2 (right) from Experiment 2. 

This approach allowed us to give users rich tradeoffs be-
tween accomplishing a task in a substandard and inefficient 
way, or by searching for an appropriate command to make 
the task easier, learning the gesture, and executing it.  For 
example, users had to choose between making an arrow 
shape by free-handing it (resulting in an obviously lopsided 
arrow), or by searching the application for an appropriate 
command, finding the solid arrow command, learning the 
solid arrow command, and executing it, to make a perfect 
solid arrow, identical to the one depicted in the task.  In 
another example, a user might have to choose between re-
drawing a complex item (such as the robot from task 3) 
from scratch after deleting it, and searching for and learning 
how to use an undo command to undo the deletion. 

The single-part tasks gave a sense of how users responded 
to each condition when given no direction; the multi-part 
tasks created scenarios in which commands such as Delete, 
Undo, and Zoom In were part of the task learning set. 

Classifying Gesture Attempts 
We observed each participant’s interactions with the soft-
ware and identified each gesture attempt, as defined here: 

Gesture Attempt:  An instance of a user attempting to per-
form a gesture in the document (practice area not included). 

We identified the gesture participants had attempted to per-
form by the command they had tapped on, their own think-
aloud verbalizations, and the structure of the ink they wrote.  
In all cases user intent was clear from the information 
available, and the distinctiveness of each gesture.  Gesture 
attempts were then classified as either failed or successful. 

Metrics 
Discovery Rate:  The number of unique non-distracter ges-
tures attempted (successfully or unsuccessfully) divided by 
the total number of non-distracter gestures. 

Overall Coverage Rate:  The ratio of successfully per-
formed to total number of non-distracter gestures. 

Performance Category:  For each gesture in the combined 
task learning set, for each participant, we assigned one of 
five categories: successful on first attempt (ONE), success-
ful within three attempts (THREE), successful in more than 
three attempts (MANY), attempted but all attempts were 
unsuccessful (FAILED), and did not discover (UNKN). 
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Experimental Design 
We used a between-participants design; each participant 
saw one condition and all four tasks.  Tasks were presented 
in the same order for all participants. 

Procedure 
Similar to Experiment 1, participants were read an introduc-
tion explaining that they would be asked to create a series 
of diagrams using a program.  As before, participants were 
asked to think-aloud.  Participants were told to go at their 
“normal working pace” and to press the Start button to be-
gin a task, and the Stop button once they had finished a 
task.  Participants were told that the diagrams they created 
did not have to be “100% perfect” but to “do as well as you 
can.”  They were also told that they did not have to match 
the color and exact alignment of the target diagram. 

To test approachability, it was important to give users no 
training, warm-up tasks, or introduction. Participants were 
not introduced to the concept of a gesture to ensure that 
their a priori knowledge would reflect what end users 
might have in the real world, as most users have no expe-
rience with pen gestures. However, believing that users of a 
specific application would probably have heard, at the very 
least, a minimal amount of high-level information about the 
application, we gave each participant one sentence of back-
ground, “You will be using Lineogrammer which has po-
werful tools for creating and editing diagrams.” 

Participants were told that the experiment moderator would 
not be able to answer questions about the software itself, 
but could clarify a given task if it was unclear.  Experiment 
moderator was only permitted to answer specific questions 
directly related to the task.  Nothing related to the capabili-
ties, features, or use of the application was mentioned at 
any time during the experiment. 

Results 
The discovery rate and overall coverage data lets us ex-
amine the effectiveness of the four experimental conditions 
in assisting users in successfully finding gestures and in-
voking them. Figure 7 summarizes this data. A one way 
ANOVA showed significant differences for both overall 
coverage rate (F3,40 = 8.8, p < 0.05) and discovery rate (F3,40 
= 3.95, p < 0.05). To further explore each metric we con-
ducted a post-hoc analysis, performing pair wise compari-
sons on the four conditions using independent sample 2-
tailed t-tests. To control for the chance of Type I errors, we 
used Holm’s sequential Bonferroni adjustment [11] with 3 
comparisons, α = 0.05 for each. GBAR provided a discov-
ery rate of 90.9% which is significantly higher than CRIB 
(t20 = -4.05, p < 0.0167)  at 75.1% and ANIM (t16.524 = -2.81, 
p < 0.025) 1 at 77.0%. However, no significance was found 
for discovery rate between GBAR and EXPLOR (t20 = -
1.86, p = 0.078) at 81.8%. This indicates users were much 
better at discovering the gestures needed to optimally per-

                                                           
1 Levene’s test for equality of variance was significant for this comparison 
yielding a correction in the degrees of freedom. 

form the given tasks using GBAR and EXPLOR. For cor-
rectly performing gestures, GBAR had an overall coverage 
of 87.6%, which was significantly higher than CRIB (t20 =  
-5.41, p < 0.0167) at 58.4%, ANIM (t20 = -5.51, p < 0.025) 
at 60.3%, and EXPLOR (t20 = -2.17, p < 0.05) at 72.7%. 
Although GBAR and EXPLOR are better suited for gesture 
discovery than CRIB and ANIM, GBAR is best in terms of 
overall performance. Surprisingly, there was little change in 
mean overall coverage between CRIB and ANIM.  
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Figure 7.  Mean discovery rate and mean overall coverage rate 
by condition (greater is better); 95% CI shown. 
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Figure 8.  Histogram of mean gesture attempts classified into 
performance category by condition (ONE is best, THREE is 
better; MANY, FAILED, UNKN are worst); 95% CI shown. 

We collected the performance category data in an effort to 
break down overall coverage to see how many attempts it 
took to successfully invoke gestures. A summary of this 
data is shown in Figure 8. We were most interested in ONE 
and FAILED because being able to complete a gesture on 
the first attempt or not at all is important to the overall usa-
bility of a gestural system; using a one way ANOVA, sig-
nificant differences were found for ONE (F3,40 = 7.51, p < 
0.05) and FAILED (F3,40 = 7.02, p < 0.05).  We also con-
ducted a post-hoc analysis using the same criteria as the 
overall coverage and discovery rate metrics. GBAR partici-
pants performed gestures correctly on their first attempt 
with a mean of 11.27, which is significantly higher than 
CRIB’s 7.26 mean (t20 = -5.59, p < 0.0167), ANIM’s 7.82 
mean (t20= -4.77, p < 0.025), and EXPLOR’s 8.36 mean (t20 
= -2.17, p<0.05).  For FAILED, GBAR, with a mean of 
0.63, significantly reduced the number of times a partici-
pant could not get a gesture to work over CRIB (t20 = 4.21, 
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p < 0.0167) and ANIM (t20 = 4.71,p < 0.025), both with a 
mean of 3.18. However, no significance was found for 
FAILED between GBAR and EXPLOR (t20 = 2.00, p = 
0.059), with a mean of 1.73. GBAR’s and EXPLOR’s pro-
vision of a practice area might explain this result. There 
was no significant difference in average practice area uses 
between EXPLOR and GBAR (t20 = 1.72, p = 0.101). 

DISCUSSION 
The results from Experiment 2 support our core hypothesis, 
as GBAR users were able to successfully execute nearly 
90% of the gestures needed to optimally perform the tasks 
they were given – a value which was significantly higher 
than the other conditions. This suggests that, with a well 
designed gesture set, users could achieve over a 90% mean 
coverage rate of an application’s gestural commands, which 
we believe is sufficient to support walk-up-and-use expe-
riences for commercial software. Experiment 1 also showed 
that users overwhelmingly chose GBAR over the other 
conditions for finding and learning gesture commands. 

Figure 7 shows that for GBAR, the mean overall coverage 
rate is closer to the mean discovery rate than in EXPLOR 
which implies that GBAR users are learning a higher per-
centage of the commands they discover than in EXPLOR. 
This is surprising as there is no additional information in 
GBAR to aid the gesture learning–in fact there is less, since 
EXPLOR has gesture demonstration icons in the crib sheet.  
Anecdotally, we noticed that GBAR users appeared more 
comfortable and confident perhaps as a result of using an 
interface which is familiar.  This confidence may have led 
them to attend more closely to the Gesture Explorer con-
tent, resulting in more successful learning. 

One can think of performing a gesture correctly on the first 
attempt as an ideal experience, whereas one can think of 
failing to perform a gesture correctly at all – probably after 
a number of failed attempts – as a poor experience.  Based 
on this framework, one can say that users of GestureBar 
had a better experience as they successfully performed sig-
nificantly more gestures on their first try, and failed signifi-
cantly fewer gestures than CRIB or ANIM, and there was 
no significant difference in failures from EXPLOR.  The 
category data also supports this as in Figure 8 one can see 
that with GestureBar a high level trend appears to be away 
from the worst categories (UNKN, FAILED and MANY) 
toward the better categories (ONE, THREE). 

The difference in performance between CRIB and ANIM 
was minimal, suggesting that animation alone does not nec-
essarily improve performance.  We suspect that the speed of 
the animation may have de-emphasized geometric nuances.  
One participant said of ANIM, “learning how to make cer-
tain shapes was vague and a bit difficult,” which was mir-
rored by several other participants.  Interestingly, animation 
did appear to help with the disclosure of stroke direction.  
We noticed that a number of users drew strokes in the re-
verse direction, resulting in recognition failures, but only 
when using CRIB.  Another problem which affected both 

CRIB and ANIM was initial uncertainty about the gesture 
interaction model, which in some cases persisted through-
out the participant’s use of the system.  In some cases, users 
would tap repeatedly on the crib sheet and then tap on ob-
jects in the document in an attempt to execute commands.  
This behavior was largely absent in EXPLOR and com-
pletely absent in GBAR.  This suggests users were driven to 
find an outlet for their habitual “point-and-click” behavior 
which was most naturally accommodated by GBAR. 

 

Figure 9.  Sample experiment 2 diagrams (left to right): CRIB 
task 1; CRIB task 2; GBAR task 1; GBAR task 2. 

A related observation is that for all conditions, some users 
felt that they needed to click on a tool before performing a 
gesture. CRIB and ANIM users complained about having to 
do this, but surprisingly EXPLOR and GBAR users did not. 
We believe this reflects an overall sense of confusion and 
dissatisfaction with CRIB and ANIM. However, at least one 
user in each condition commented that it was frustrating to 
find a command, such as Undo, and then have to learn a 
gesture in order to perform it (as opposed to just clicking a 
button). It is not clear how severe a problem this is since 
Grossman’s related work [7] observed that users had a posi-
tive perception of his disabled technique in which menu 
items were disabled to force usage of hot-keys. 

An intuitive way to visualize the difference in performance 
between GBAR and CRIB is to review sample diagrams 
made by users (see Figure 9). These sample diagrams clear-
ly show a significant difference in terms of real productivity 
between the average coverage rates of 58.37% for CRIB 
and 87.56% for GBAR. GBAR also had a higher mean dis-
covery rate than the crib sheet designs which we largely 
attribute to its less cluttered layout that makes higher level 
categorizations stand out (users commented that they liked 
the command categorizations in GBAR even though the 
same categorizations, including headings, were present in 
CRIB as well). However, the higher discovery rate for 
EXPLOR over the other crib sheet conditions, suggests that 
finding high-value information during one search has the 
added benefit of reinforcing future searching behavior. 

In almost all cases, participants using ANIM and EXPLOR 
opened the animation/gesture explorer for each gesture they 
wanted to learn; however, in a handful of cases, users opted 
to simply read the crib sheet icon.  In two of these cases, the 
participant failed the gesture attempt and then opened the 
gesture explorer before continuing.  It is possible that over 
time, some users may become comfortable with the concept 
of a gesture and find referencing a crib sheet more conve-
nient, perhaps as an optional power-user feature.  It is also 
possible that after a sufficient introductory period, users 
might switch to an “expert mode” to save screen space. 

CHI 2009 ~ Gesture UIs April 9th, 2009 ~ Boston, MA, USA

2277



FUTURE WORK 
The fundamental nature of gesture UIs implies that, at 
times, gestures will be misrecognized. We are thus interest-
ed in techniques which either reduce the likelihood of errors 
or at least make it easier to recover from them. One ap-
proach is to encourage users to make more use of the Prac-
tice Area. This might happen as a byproduct of just improv-
ing the feedback of the Practice Area, perhaps by integrat-
ing the disclosure techniques used in OctoPocus [3], or by 
incorporating explicit textual answers to the question "why 
didn't my gesture work?" as implemented in the Flick tu-
torial in Microsoft Windows Vista. Alternatively, we might 
exploit workflow context, such as knowledge of which ges-
tures had recently been encountered in the GestureBar, ei-
ther to improve recognition tolerance or to provide sugges-
tive recovery or performance feedback after ensuing failed 
attempts.  GestureBar could also be applied to multi-touch 
and speech UIs. 

CONCLUSION 
We have presented GestureBar, a familiar-looking toolbar 
UI, which, instead of executing a command when clicked, 
richly discloses the gestural interactions needed to execute 
the command.  Thus, unlike crib sheets which present an 
entirely unfamiliar UI metaphor, GestureBar users naturally 
and necessarily discover gestural interaction as a byproduct 
of approaching the GestureBar as if it were a conventional 
toolbar. A quantitative, ecologically valid study of user 
performance supports our motivating hypothesis that even 
novices, with no prior exposure to gestural interaction, can 
immediately and successfully use a gestural application 
without the need for human assistance or up-front training.  
A qualitative study of user preferences shows that Gesture-
Bar is preferred over the other crib sheet-based conditions 
for finding, and learning commands.  Finally, GestureBar 
presents no barriers to widespread adoption in terms of re-
quired recognition technology or gesture set constraints, 
and it can be easily unified with standard toolbar elements.  

ACKNOWLEDGMENTS 
A special thanks to Andries van Dam, Ken Hinckley, and 
Steven P. Reiss for their advice and insight, and to IARPA 
and the Microsoft Center for Research on Pen-Centric 
Computing at Brown University for their support. 

REFERENCES 
1. Alvarado, C. Sketch Recognition User Interfaces: Guidelines 
for Design and Development.  In Proc. of AAAI Fall Symposium 
on Intelligent Pen-based Interfaces, (2004). 

2. Alvarado, C. and Davis, R. SketchREAD: a multi-domain 
sketch recognition engine. In Proc. of UIST’04, 23-32.  

3. Bau, O., and Mackay, W. OctoPocus: A Dynamic Guide for 
Learning Gesture-Based Command Sets. UIST’08, 37-46. 

4. Buxton, W. Chunking and phrasing and the design of human-
computer dialogues. IFIP World Computer Congress’86, 475-480. 

5. Buxton, W., Fiume, E., Hill, R., Lee, A., Woo, C. Continuous 
Hand-Gesture Driven Input. Graphics Interface '83, 191-195. 

6. Forsberg, A, Holden, L., Miller, T., and Zeleznik, R. The Music 
Notepad, Brown University (2005). 

7. Grossman, T., Dragicevic, P. and Balakrishnan, R. Strategies 
for Accelerating On-line Learning of Hotkeys. CHI’07, 137-144. 

8.  Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Bala-
krishnan, R. Hover Widgets: Using the Tracking State to Extend 
the Capabilities of Pen-Operated Devices. CHI’06, 861-870. 

9. Hinckley, K., Baudisch, P., Ramos, G., Guimbretiere, F. Design 
and Analysis of Delimiters for Selection-Action Pen Gesture 
Phrases in Scriboli. In Proc. of CHI'05, 453-460. 

10. Hinckley, K., Zhao, S., Sarin, R., Baudisch, P., Cutrell, Ed., 
Shilman, M., Tan, D.  InkSeine: In Situ Search for Active Note 
Taking. In Proc. of CHI (2007), 251-260. 

11. Holm, S.  A Simple Sequentially Rejective Multiple Test Pro-
cedure.  Scandinavian Journal of Statistics, 6 (1979), 60-65. 

12. Hong, J. and Landay, J.. SATIN: A Toolkit for Informal Ink-
Based Applications. In Proc. of UIST (2000), 63-72. 

13. Hse, H. and Newton, A. Recognition and beautification of 
multi-stroke symbols in digital ink. Computers & Graphics, 29, 4 
(August 2005), 533-546. 

14. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka, H. 
Interactive Beautification: A Technique for Rapid Geometric 
Design. In Proc. of UIST (2007), 105-114. 

15. Kurtenbach, G., Moran, T. P. and Buxton, W. Contextual 
Animation of Gestural Commands. Graphics Interface '94, 83-90. 

16. Long, C., Landay, J., Rowe, L., and Michiels, J.  Visual 
Similarity of Pen Gestures. In Proc. of CHI’00,  360-367. 

17. Mankoff, J., Hudson, S. and Abowd, G. Providing Integrated 
Toolkit-level Suport for Ambiguity in Recognition-based 
Interfaces. CHI’00, 368-375. 

18. Microsoft, Inc.  Office 2007.  2006. 

19. Microsoft, Inc.  Windows Vista.  2006. 

20. Mouse Gestures Add‐on for the Mozilla Firefox Web Browser.   
http://www.mousegestures.org/. 

21. Palm, Inc.  Graffiti character recognizer.  

22. Polson, P. and Lewis, C. Theory-Based Design for Easily 
Learned Interfaces. Human-Computer Interaction, 5, 2 (June 
1990), 191-220. 

23. Rubine, D. Specifying Gestures by Example. In Proc. of 
SIGGRAPH’91, 329-337. 

24. Tapia, M., and Kurtenbach, G. Some Design Refinements and 
Principles on the Appearance and Behavior of Marking Menus. 
UIST’95, 189-195.25.  

25. Wobbrock, J., Wilson, A., and Li, Y. Gestures without 
Libraries, Toolkits or Training: A $1 Recognizer for User 
Interface Prototypes.  In Proc. of UIST (2007), 159-168. 

26. Zeleznik, R., Bragdon, A., Liu, C., and Forsberg, A.  Line-
ogrammer: Creating Diagrams by Drawing. UIST '08, 161-170. 

27. Zeleznik, R., and Miller, T. Fluid Inking: Augmenting the 
Medium of Free-Form Inking with Gestures.  In Proceedings of 
Graphics Interface (2006), 155-162. 

28. Zhao, S., Agrawala, M. and Hinckley, K.  Zone and Polygon 
Menus: Using Relative Position to Increase the Breadth of Multi-
stroke Marking Menus. CHI (2006), 1077-1086. 

 

CHI 2009 ~ Gesture UIs April 9th, 2009 ~ Boston, MA, USA

2278


