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ABSTRACT 

We present the design of Lineogrammer, a diagram-

drawing system motivated by the immediacy and fluidity of 

pencil-drawing.  We attempted for Lineogrammer to feel 

like a modeless diagramming “medium” in which stylus 

input is immediately interpreted as a command, text label 

or a drawing element, and drawing elements snap to or 

sculpt from existing elements.  An inferred dual representa-

tion allows geometric diagram elements, no matter how 

they were entered, to be manipulated at granularities rang-

ing from vertices to lines to shapes. We also integrate 

lightweight tools, based on rulers and construction lines, 

for controlling higher-level diagram attributes, such as 

symmetry and alignment. We include preliminary usability 

observations to help identify areas of strength and weak-

ness with this approach. 

ACM Classification: H5.2 [Information interfaces and 

presentation]: User Interfaces
 
- Graphical user interfaces. 

General terms: Design, Human Factors, Algorithms 

Keywords: Drawing, alignment, diagram, pressure, snap-

ping, recognition, gesture, sketching, beautification, ruler, 

pen, pen-centric, symmetry, handwriting, disambiguation. 

INTRODUCTION 

Diagrams drawn with pencil on paper, spanning a vast do-

main of styles, can be created in seconds using only a 

lightweight erase-and-redraw editing model; however, they 

are also characteristically imprecise. Alternatively, dia-

grams created on computers can leverage sophisticated, 

precise editing techniques, but typically require a more 

deliberate, strategy-oriented “choose-a-primitive” approach 

which can be effortful, limiting and distracting.  Our hypo-

thesis, however, is that the familiar, fluid and lightweight 

line-based interaction and editing style of pencil and paper 

can be seamlessly combined with higher-level shape-based 

interactions to provide a best of breed system. 

Perhaps in the idealized form of such a system, users would 

freely sketch their diagram, as if using pencil and paper, 

and, as desired, see a cleanly formatted result.  However, 

since freehand drawings can be ambiguous even to their 

creators and no technology offers perfect recognition re-

sults, such an idealized deferred beautification system may 

be unattainable. This raises a research question: under what 

conditions is imperfect deferred beautification advanta-

geous over beautifying immediately?  As an initial step 

toward an answer, we are pushing the boundary of imme-

diate beautification to create a baseline for measuring fu-

ture progress in deferred beautification.  Our expectation is 

that immediate beautification may be less desirable during 

conceptualization phases, but may be potentially superior to 

deferred beautification when entering or refining a well-

understood diagram due to a greater sense of control.  

 

Figure 1. Screenshots. Simple drawings composed 
of lines, curves, text and polygons.  Drawings were 
made without an explicit mode switch. The Gestu-
reBar discloses gestures and drawing strategies. 

 

 

 

 

 

Figure 2.  Drawing sequence. Top: Drawn lines are 
beautified and snapped. Unwanted segments are 
scribbled out. Bottom: text is recognized and typeset, 
a vertex is moved, and a zoom gesture is made. 

Lineogrammer (Figure 1) reflects five design criteria that 

we feel address limitations of prior approaches:  

 Disclose gestures and their nuances 

 Avoid mode switches for text, geometry, gestures 

 Simplify snapping with lightweight editing 

 Enable interaction at different perceptual scales 

 Make lightweight, special-purpose tools available 
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By blending aspects of various known and novel interaction 

styles (Figure 2), we believe Lineogrammer is a novel, 

best-of-breed approach to creating diagrams on a computer. 

Specifically, Lineogrammer highlights contributions in four 

synergistic areas, including: 

 Heuristics for modelessly disambiguating between 

text, geometric drawing elements and command ges-

tures  

 A snapping engine that can adjust the input stroke and 

existing drawing elements 

 UI mechanisms for manipulating the diagram at granu-

larities ranging from vertices and individual line seg-

ments through inferred primitives 

 Lightweight tools, including construction lines and a 

ruler, which support alignment and symmetry 

PRIOR WORK 

There are numerous commercial systems for creating pre-

cise, domain-specific diagrams, such as Microsoft Visio.  

However, these systems are tuned to create complex but 

rigid structures and not the general diagrams facilitated by 

Lineogrammer‟s literal drawing metaphor.  There are also 

commercial systems for creating general purpose diagrams, 

such as Microsoft PowerPoint.  With a few exceptions, like 

Corel Grafigo 2, these systems require users to interact 

modally to find and instantiate primitives, and do not allow 

low-level shape editing of primitives at the level of lines.  

Although quite powerful, these systems do not support the 

familiar strategies and techniques of pencil and paper draw-

ing.  There are also several systems that provide sketch-

based interactive beautification only for domain-specific 

diagrams, such as a modeless system for sketching directed 

graphs [1]. 

In contrast, relatively few general-purpose diagramming 

systems have been developed with sketch based interfaces.  

Saund‟s image editor [20] exploited perceptual structure to 

simplify selection and manipulation of visual structures in 

bitmap images.  We apply similar notions to facilitate the 

manipulation of structured vector drawings at different per-

ceptual scales ranging from the vertex, to line segment, to 

polygon.  Igarashi [8] presented the most similar system to 

ours, Pegasus which introduced the term interactive beauti-

fication, and reviewed the relative merits of interaction 

beautification to other approaches [5] [11] [16]. In essence, 

interactive beautification amortizes the complex errors and 

error recovery associated with batch processing a sketch 

through an incremental, monotonic snapping engine that 

considers local and global context, but is much simpler than 

constraint-based approaches.  

Lineogrammer both extends Pegasus and adopts a different 

approach to snapping which reduces display clutter. Lineo-

grammer‟s extensions include: recognizing text, curves, 

and single-stroke polygons, a multi-function ruler widget, 

and a range of gestural and direct manipulation techniques 

for multi-scale editing and view control.  However, Lineo-

grammer approaches snapping differently than Pegasus. 

When Pegasus displayed more than one snapping alternate, 

we observed that users often were distracted or confused 

and did not choose a correct alternate when it was dis-

played or spent considerable time searching for the correct 

alternate whether or not it was actually displayed.  Thus, 

with Lineogrammer, we explore the notion that the overall 

cost of a complex alternates display is greater than the cost 

of more demand-driven correction techniques, such as join-

ing lines with a connecting stroke, dragging vertices, or just 

erasing and redrawing. Like Pegasus, Lineogrammer makes 

the best-fit snap line be the default interpretation, but unlike 

Pegasus, Lineogrammer will show at most one alternate.  In 

addition, Lineogrammer‟s snapping techniques are speed 

dependent which enables users to effectively override 

snapping by drawing slowly and carefully. 

PaleoSketch [15] provides interactive beautification by 

best-fitting an input stroke with one or more of eight 

classes of higher-level geometric primitives.  Lineogram-

mer complements a simplified version of this technique 

(that only supports complex fits for polylines) with incre-

mental techniques that use the existing drawing as context 

for snapping simple primitives entered one at a time. 

The alternative of deferred beautification has shown prom-

ise for 3D modeling particularly using oversketching tech-

niques [9].  For 2D drawing, Yu [22] combined interactive 

(similar to [15]) and deferred beautification, but most work 

has focused either on imprecise or domain-specific struc-

tured drawings[4][12]. Plimmer, for example, used deferred 

beautification with interactive feedback of the recognition 

state when sketching the domain-specific, highly structured 

geometries needed for UML diagrams and GUI forms [17].   

More recently, Ohki presented a 2D drawing system [13] 

that supports a related notion of constructing drawings 

based on set operations over primitive shapes; however it is 

not modeless in the sense that shapes are not drawn natural-

ly with a pen and interaction requires an explicit menu se-

lection to change tools. Ohki‟s system also demonstrated 

some higher-level suggestions, for instance to create sym-

metric objects and to perform iterative placement, that 

would be interesting to explore within Lineogrammer. 

There are several techniques for distinguishing between 

handwritten text and drawings [14][21], including the Mi-

crosoft Windows InkDivider. Based on Patel‟s studies [14], 

we hand-optimized a variant of her binary classification 

scheme. Our technique supports the interactive beautifica-

tion constraint that stroke classifications are fixed after 

1/2sec by combining our interactive symbol recognizer [23] 

with rules based on other spatial and temporal features.  

PostBrainstorm [6] is related in that new strokes are asso-

ciated with existing objects and typeset recognition is dis-

played below all “text-like” strokes. 

Lineogrammer‟s rulers are closely related to Alignment 

Sticks [18], but differ because Lineogrammer‟s interactions 

are designed for uni-manual interaction and provide addi-

tional functionality, including symmetry operations. 

SYSTEM DESIGN 

The virtue of pencil drawing derives from its unique com-

bination of expressiveness and lack of modes–in short, it is 

transparent.  In designing Lineogrammer, we attempted to 
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replicate aspects of this style by replacing the cognitively 

heavyweight UI management tasks, such as foraging 

through toolbars, with functionality centered on drawing 

elements.  Thus, Lineogrammer has no conventional tool-

bars; instead it is a blank drawing surface that, for discove-

rability of strategies and functionality, is docked to an ex-

planatory “toolbar”.  As with pencil and paper, users draw 

“commands, ” text and geometry interchangeably, but with 

assistance provided by a snapping and shape inference en-

gine and formatting tools, to create refined results. 

As with any complex system, numerous interdependent 

design choices were made at varying levels of detail.  For 

simplicity, however, we present the design in terms of the 

following major categories:  

 Making techniques and gestures learnable 

 Classifying input strokes  

 Snapping lines 

 Editing with gestures and widgets  

ITERATIVE USABILITY TESTS 

Over the course of the development of Lineogrammer, we 

conducted three rounds of usability testing.  We include 

preliminary observations gleaned from observing 10 pilot 

users (6 female/4 male,aged 18-30, right-handed), recruited 

from the general population of Brown University, including 

four novices.  Eight subjects had no Tablet PC experience.  

Tests were conducted on a Toshiba Portégé M200 Tablet 

PC with 1 GB of RAM and a 60 GB hard drive.  In the first 

pilot round of testing, the software was still very early and 

two subjects participated, with the goal of getting rough 

feedback on the overall approach.  Five subjects were then 

brought in for the second round; this version did not yet 

include stroke alternates, zoom, the floating toolbar, or se-

lection repetition.  Finally, three subjects took part in the 

third round with a much-improved version of the software 

reflecting many refinements based on previous testing.   

Subjects were given a series of tasks of two types: verbal 

and visual.  Verbal tasks consisted of a verbal description, 

such as “draw your family tree using boxes, lines and text” 

or “draw a cartoon house with a door, window, and a chim-

ney.”  Visual tasks consisted of printed diagrams, which 

users were asked to replicate.  No training or hints were 

given, however for some tasks we asked users to make use 

of a specific feature, referencing it by name. 

In the sections that follow, we include an observations sub-

section detailing anecdotal results from these tests. 

MAKING TECHNIQUES AND GESTURES LEARNABLE: 

We have explored a variety of techniques for training no-

vice users in pen-centric and gestural systems, including 

providing heads-up displays, online reference manuals, 

tutorials, and menu shortcuts.  However, our observation is 

that users do not seem receptive either to a priori learning, 

or having information pushed at them.  Instead, they seem 

to want to explore information narrowly, on-the-fly that 

matches their immediate task or mental goal. 

Thus, we designed a GestureBar[2], inspired by [10][24], to 

represent all system operations, including some critical 

multi-step techniques, as toolbar items (Figure 3).  Unlike 

conventional toolbars, GestureBar items do not perform 

functions but rather indicate how to perform them.  Toolbar 

items display one or more annotated animations and pro-

vide a „Practice‟ area for exploring gestures or techniques 

with the assistance of nuanced, targeted feedback. 

 

Figure 3. Gesture Bar.  The user chooses Zoom to 
see related gestures along with a Practice area. 

Although GestureBar is still being formally evaluated, our 

pilot tests indicate that it is more effective at disclosing 

gestural interactions than conventional crib sheets, at least 

for novice users. Users with no experience whatsoever with 

gestural UIs have been able to find, learn and perform all of 

Lineogrammer‟s gestures without human assistance over 

the course of half hour to hour long sessions. 

CLASSIFYING INPUT STROKES: 

There is no a priori distinction between drawn strokes that 

represent geometry (line, polyline, and curve) and those 

that represent text (print or cursive) or gestural commands. 

Additionally, the same stroke instance can logically fall 

into more than one classification (i.e., a circular stroke can 

be text or circle geometry).  Thus we developed a set of 

empirically-derived recognition heuristics for classifying a 

stroke when it is entered.  These heuristics are encoded in 

an ad hoc rule base of procedural methods, although other 

implementations are possible and might be superior. 

Gesture Design and Classification 

To assist determining whether an input stroke indicates a 

gesture, we designed our gestures as a balance between 

visual/motor appropriateness and machine recognizability. 

This design strategy by definition makes it straightforward 

to distinguish gestures from other input strokes since we 

avoid gestures which are hard to disambiguate using only a 

stroke segmentation algorithm similar to Calhoun‟s [3] and 

a set of simple geometric rules. Since gestures are visually 

transient, we attempt to increase awareness of their invoca-

tion by fading an icon away at the location where they were 

recognized that matches the toolbar icon for their function. 

The delete gesture is discussed in detail the Editing section.  

The lasso gesture is related to the pigtail lassos used in 

Scriboli[7], but is recognized procedurally without needing 

a modifier key by three successive features: a nearly closed 

loop, a high-curvature cusp, and a straight tail.  This defini-

tion recognizes both pigtails and non self-intersecting tails, 

and facilitates control over the exact boundary of the lasso.  
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Table 1 summarizes design issues of the full gesture set. 

 
 

 

Delete – defined broadly as stroke with 
>= 3 sharp cusps.  Broad definition is 
necessary because of its frequent use. 
Details above. 

 Join lines – is essentially not a gesture, 
but what might be done on paper to join 
lines. 

 
 

Lasso select – defined broadly as a 
closed loop with a sharp, straight hook-
like retrace at the end. 

 
 

 

Typeset text (top) – underline was our 
first choice, but confusable for math. 
 
Edit properties (bot.) – almost any ges-
ture would do, but ‘e’-like loop was 
mnemonic. 

 Undo (top); Redo (bot.) Symmetric ges-
tures to be memorable. Straight lines 
were desired but were ambiguous w/ 
text & geometry. 

 Zoom in (top) – flattened diagonal zig-
zag from bottom-left to top-right that 
transitions well to interactive zoom rec-
tangle.   
Zoom in (bot.) – Some users found 
double-circle to be more natural and 
more reliable. 

 
 
 

Zoom out – to be memorable, this is the 
Zoom In gesture reversed. 

Press & hold Pan – not considered ideal because of 
pause, but commonly used in PDAs 

Line, curve,  
ellipse, poly-
gon 

Literal gestures for creating geometry 
are really shape recognition, not ges-
tures.  These need to be disambiguated 
from text. 

Table 1. List of Gestures.  Red dots indicate the 
start of the gesture when important. Green indicate 
existing diagram context. 

Observations. We found users were for the most part aware 

of all the systems gestures and were in fact eager to learn 

them.  In initial testing, some users performed the Typeset 

Text gesture without a sufficiently sharp hook at the end or 

without a hook at all.  We addressed this by adding text 

tool tips in the GestureBar which point out important de-

tails of the gesture.  In later testing, we noticed no systemic 

barriers with gestures, although the zigzag zoom gestures 

were harder for users to perform consistently correctly. 

Text/Geometry Classification 

Input strokes that are not gestures must either be text or 

geometry.  Although sophisticated techniques are the sub-

ject of ongoing research [21][14], they are not the focus of 

our work so we use a simple but workable set of heuristics 

which consider the size, geometry, and spatio-temporal 

relationship of the input stroke to pre-classified diagram 

elements. An initial criterion that trivially handles many 

cases is to restrict the maximum size of text input to 2cm, 

which seems reasonable since larger text is unusual but can 

still be easily achieved by choosing a large font or interac-

tively scaling.  In addition, simple, single-stroke closed 

polygons and many character symbols, can be easily distin-

guished using a recognizer trained to distinguish the salient 

differences of polygons and text symbols.  However, cir-

cles, straight lines and polylines present specific disambig-

uation challenges, for instance, from symbols like „0‟, „1‟, 

and „w‟ respectively – discussed in more detail below. 

Existing Context. Existing diagram context provides a 
foundation for disambiguating text and geometry (Figure 
4). For example, if a straight vertical line stroke is drawn 
next to a known text elements and of a similar size, we will 
classify it as a text symbol (‘1’, or ‘l’).  Similarly, if that 
same stroke were drawn starting on, ending on, or intersect-
ing an existing line stroke, then we will classify it as a line.  
Neither of these heuristics is guaranteed to work, but em-
pirical observations indicate that leveraging local context, 
when it exists, significantly reduces mis-classifications. 
 

 

 

 

 

 

 

Isolated strokes. The real disambiguation challenge occurs 

when a stroke is drawn in isolation, such as the start of a 

word or the beginning of a multi-stroke shape.  In these 

situations, we try two metrics: the ratio of the stroke length 

to its number of cusps, and a yes/no classification provided 

by our single character recognizer.  Cursive words will be 

classified as text based on the first metric.  The second me-

tric matches input strokes to a broad, writer-independent set 

of character symbol templates and classifies the stroke as 

text if it matches any template. We intentionally omit tem-

plates for „0‟, „1‟, and „i‟ because they would also match 

common strokes intended as geometry. Instead, for funda-

mentally ambiguous strokes in isolation, we rely on a tem-

poral recognition strategy where slow input is biased to-

ward drawing elements and fast input toward text.  For ex-

ample, a straight line (or a circular stroke) would be placed 

on a deferred recognition queue. After 500 ms, the queued 

stroke would be classified as a drawing element (line or 

circle) unless a new stroke is drawn nearby that the recog-

nizer labels as text with high confidence.  In this case, the 

queued stroke would be recognized as a „1‟. This implies 

that some characters, like „0‟, cannot be recognized in iso-

lation. When text is misclassified as geometry, the Typeset 

gesture can be used to coerce the geometry back to text. 

We support curves, circles and ellipses, although our im-

plementation of them is primitive and would benefit from 

Paulson‟s approach [15].  The curved geometries we do 

support are treated inefficiently as polylines with unselect-

able vertices.  In addition, our heuristics for distinguishing 

complex curves from text requires more work. 

Observations. We initially allowed text to be drawn at any 

size which meant that all isolated lines, no matter how 

large, would be subject to the 500ms recognition delay and 

Figure 4. Text/drawing disambiguation. A leading ‘0’ 
or the initial stroke of a ‘T’ requires a 500ms delay 
during which an additional text stroke must be input. 
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misrecognition as text. Pilot users, however, never drew 

large text, so we restricted text classification to strokes 

<2cm high.  This significantly reduced false positive text 

recognition, although false positive geometry recognition 

can be a problem in dense input that necessitates zooming.   

Since we deliberately support the strategy that slow input is 

biased away from text recognition, we observed that some 

novice users had initial difficulties because they block 

printed text in a slow, overly deliberate manner, as com-

pared to their writing speed when we asked them to write 

on paper.  We expect that this problem can be mitigated by 

adding explicit detail in the GestureBar.  

SNAPPING LINES 

Although natural and expressive, hand-drawn input is often 

imprecise, particularly as writing speed increases.  Conse-

quently, Lineogrammer attempts to snap input geometry to 

existing diagram features (vertices, edges, midpoints, and 

polygon centers) using a tolerance which is dynamically 

adjusted based on drawing speed.  However, since snapping 

occurs while the diagram is being constructed when there is 

limited context, we cannot expect a unique, monotonic (i.e., 

affecting only the input stroke) snap result to be sufficient.  

Suggestive techniques attempt to ameliorate the uniqueness 

problem by presenting multiple potential snap results in 

situ for the user to select from [8].  Since the range of alter-

nates for any given line can be combinatorial quite large, 

culling must be done to achieve a manageable set.  Even 

when Pegasus presents only three alternates, the display 

can look cluttered and be confusing or distracting; adding 

more alternates increases the odds of the intended result 

being available but is visually even less acceptable. 

            

Figure 5. Stroke alternates. (Left) The dashed line 
alternate closely matches the input stroke; the solid 
vertically-snapped line is the default. (Right) The al-
ternate is the line between the two centers; the de-
fault is the same line showing only the segment be-
tween the rectangles. Tapping a dashed line 
switches the line to that alternate. 

We instead treat snapping optimistically as a lightweight 

aid to clarified drawing, not as a sole solution, and provide 

at most a single alternate, represented by a dashed line 

(Figure 5).  Our experience is that simple editing options, 

such as erasing and carefully redrawing or interactively 

manipulating, are preferable to the distraction of complex 

alternate displays which may not contain the correct result.   

The snapping algorithm can snap both an input line‟s orien-

tation to the principal axes or to other lines and their mirror 

images, and perpendiculars, and also its endpoints to exist-

ing vertices or lines (midpoints and shape center targets are 

highlighted upon approach.) The algorithm is non-

monotonic and thus, after snapping the input line, the algo-

rithm may modify existing lines; however, the algorithm 

will only extend, but not re-orient, existing lines to snap to 

the input line. When a single input stroke is recognized as a 

polyline or polygon, additional considerations apply to en-

sure the integrity of the resulting shape. 

We consider this approach optimistic because we produce 

an alternate only for the nearest orientation snap, but not 

for different endpoint snaps.  Our expectation is that when 

snapping targets are clustered, users will move more slowly 

causing the snapping threshold to be reduced; when snap 

targets are isolated, they will be able to move faster, in-

creasing the snapping thresholds, and still benefit from 

snapping.  The dynamic snapping radius for vertices is: 

speed  = arclength of last 10 samples (~ 1/10th sec) 

radius = min(stroke.Length/4, max(.1in, min(.3in,speed)))  

Controlling line orientation, however, uses an alternate, 

since orientation targets are often not visible or are not lo-

calized to the stylus path which makes unintentional snap-

ping more likely.  Thus, when a line orientation is snapped, 

we show an alternate, defined by the line‟s original start 

and end point, which overrides the snap.  In either case, the 

line‟s endpoints will be snapped if within the threshold of a 

feature; however, when the line orientation has been 

snapped, the endpoints can only snap to features that are 

collinear with it.  

 

Figure 6. Joining lines.  Mis-snapped lines can be 
joined by overdrawing (shown in red for emphasis). 

Observations. We initially used a static snapping threshold, 

but found that it, like grids, too often caused undesired 

snapping. Turning down this threshold tended to avoid un-

wanted snapping but forced users to draw everything with 

deliberation. With the dynamic threshold, users qualitative-

ly seem to have control snapping better, although more 

sophisticated techniques are no doubt possible. When in-

tended snaps are missed, overdrawing joining lines is natu-

ral and usually fixes the problem (Figure 6.) In other cases, 

users instinctively seem to adopt the habit of scribbling out 

mis- or un-snapped lines and redrawing them more slowly 

to gain the advantage of the tighter snapping threshold. 

Visually indicating this threshold by highlighting the near-

est target might also improve the experience but is compli-

cated since snapping tolerances are a function of the entire 

stroke.  A caution is that several users found feedback of 

even a single alternate was distracting.  

EDITING WITH GESTURES AND WIDGETS 

Lineogrammer supports a suite of additional interactive 

functionality which complements the basic draw-

ing/snapping input model.  Although some users are suffi-

ciently skilled at drawing that they may be able to accurate-
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ly enter a final design, more typical users would need to 

manipulate their designs to gain better control and perspec-

tive over the design space. The techniques we describe in 

this section work collectively to facilitate lightweight ex-

ploration and flexible workflows and include: 

 Scribble “drawing” 

 Lightweight selections 

 Moving, rotating, scaling, Pressure Snapping 

 Symmetry, alignment and distribution  

 Working at different levels of detail 

 Formatting text 

          
Figure 7. Deleting. (Left) A notch is “sculpted” from 
a rectangle. (Right) Deleting the intersected line 
segment causes a rectangle to be inferred. 

Scribbling as a Drawing Technique 

Besides drawing lines, perhaps the most important interac-

tion technique in Lineogrammer is the scribble delete ges-

ture.  The idea is not just that scribbling is an easy almost 

reflexive way to correct imprecise drawings, but more im-

portantly that it affords a powerful subtractive sculpting 

strategy for creating shapes by successive refinement (Fig-

ure 7).  Unlike conventional shape palette approaches, 

Scribble Drawing allows users to draw a simple approx-

imate shape, intersect it with refinement lines, and then 

remove line segments that are inferred from the intersection 

points.  For this approach to be effective the transition be-

tween drawing and deleting must be fluid and so we rely on 

a very broadly defined scribble gesture that allows users to 

perform it in arbitrary contexts in ways that feel natural to 

them.  This approach is similar to [8], except we delete all 

inferred line segments intersected by the scribble, not just 

the first.  Additionally, we need to disambiguate scribbles, 

defined broadly as >=3 somewhat sharp cusps from poten-

tially similar cursive text.  Instead of relying on ambiguous 

geometrical measures, we use temporal and spatial context.  

If a scribble occurs within 500ms of a previously classified, 

neighboring text stroke and does not intersect it more than 

5 times, we treat it as additional text.  Scribbles that do not 

overlap existing elements will always be text. 

Observations. The scribble gesture is typically the first 

thing mentioned when users are asked to name something 

they like in the system; they frequently use it reflexively.   

Lightweight Selections 

To interact with a diagram, the user must communicate a 

selection scope.  To maximize expressivity, we wanted it to 

be easy to select arbitrary contiguous and disjoint collec-

tions of vertices, lines and polygons, but at the same time 

we wanted selection to be cognitively lightweight.  Pre-

vious work demonstrated a powerful perceptually-based 

approach to trace out selection paths or poses [20].  Al-

though we like this approach, it presents integration chal-

lenges for our modeless interaction environment, and we 

felt that for many, if not most, common cases, a simpler 

tap-based multi-selection mechanism [7] would be prefera-

ble.  Still, we augment tap selection with a Lasso gesture 

can for selecting larger sets of neighboring elements.  In 

either case, selections are additive such that tapping on 

unselected drawing elements adds them to the current se-

lection; tapping on a selected element de-selects it, and 

tapping on the background de-selects everything. Tap se-

lection of vertices is straightforward, so we will only dis-

cuss tap selection of higher-level diagram features. 

 

Figure 8. Selecting lines.  (Left) Tapping selects 
whole lines ignoring intersections.  (Right) Scrib-
bling then deletes only the selection.  

Line Selection. Tapping on a line can be ambiguous when 

the line intersects with other lines. For selection, we ignore 

the inferred line segment boundaries and select the entire 

line when any part of it is tapped (Figure 8).  To restrict 

selection to just an inferred line segment, the line must be 

explicitly split by tapping on the point of intersection to 

create a vertex.  The reason we chose this behavior is that 

collinear artifacts generally do not occur unless intended 

and thus we want to preserve collinearity across selec-

tion/manipulation actions.  We note that the opposite as-

sumption is made for deletion which is typically used to 

clean up errant line segments and to perform subtractive 

drawing.  The difference between selection and deletion 

can be exploited:  if the user wants to delete an entire line, 

instead of trying to scribble over each inferred line seg-

ment, they can instead tap anywhere on the line to select 

the whole line, and then scribble over any part of the selec-

tion to delete the entire selection. 

 

Figure 9. Polygon selection.  There is no front-to-
back ordering for inferred polygons. Clicking the 
overlapped trapezoid will select one or more other 
polygons which can be deselected by tapping them. 

Polygon Selection. Although, a polyline or polygon can be 

selected by sequentially tapping on all of its edges, tapping 

inside a polygon is more convenient.  Since users don‟t 

explicitly create polygons – they are inferred automatically 

by detecting closed loops of edges – issues of ambiguity 

again arise.  The dominant heuristic applied is to consider 
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any closed loop of lines that does not traverse any line in-

tersections to be a polygon.  However, ambiguities may 

still exist because inferred polygons may overlap one 

another (Figure 9).  If a tap falls within more than one over-

lapping polygon, then they all are selected; tapping on po-

lygons that were not intended de-selects them.  The excep-

tion is that we do not select any polygon that completely 

contains another polygon that was also selected.  Alterna-

tively, selecting a containing polygon automatically selects 

all contained diagram elements, which we believe is gener-

ally desirable for manipulation. Nonetheless, selection of 

certain types of tiled shapes, among others, can require 

multiple taps or lassoing.  Going forward, particularly as 

we extend support for filling inferred polygons, we believe 

that additional design consideration is warranted. 

 

Figure10. Floating toolbar. A marking menu (green 
triangle) that was expanded to show toolbar items.  

Associated with every selection, is a local floating toolbar 

(Figure 10) for accessing less critical functionality, includ-

ing: setting colors and thicknesses, grouping the selected 

elements, making all selected objects be of the same size, 

and a Copy handle for copying the selection. A drag handle 

supports repeated copying (Figure 11).  

   

Figure 11 Repeated copying: Dragging the ‘…’ tool 
item creates default-spaced copies (left.)  Releasing 
and dragging in the green area changes the num-
ber of copies (right.) Tapping ends the action. 

Observations. We had observed that users often created a 

selection, moved it and then started drawing or attempted to 

select something else.  In the former case, they did not 

usually notice that the selection remained as they started to 

draw which would later generate confusion.  In the latter 

case, they would inadvertently find themselves extending 

the original selection instead of replacing it. In response to 

this, we now automatically deselect everything when a new 

stroke is drawn or after a selection is moved and another 

primitive is selected.  We also noticed that several users 

who were explicitly informed that they could press the sty-

lus button to select objects with a conventional lasso (i.e., 

no gestural „hook‟ required) preferred instead to learn the 

lasso gesture.  A more thorough follow-up investigation of 

the preference for gestures over stylus buttons is warranted. 

As for the floating toolbar, we noticed that it sometimes got 

in the way, especially after we extended its functionality 

with more buttons.  We tried to address this scalability is-

sue by replacing the toolbar with a marking menu.  Howev-

er, we then noted that the nature of the marking menu made 

people less aware of its functionality.  We now collapse the 

toolbar, but bias interaction toward expanding it since it 

looks and acts like an expandable ribbon.  That is, the East 

marking menu item allows users to seemingly drag the 

toolbar out of the menu (Figure 10.) More advanced users 

can still benefit from the arguably more fluid and efficient 

traditional way of invoking a marking menu item.  

Moving, Rotating, Scaling and Pressure Snapping 

We facilitate interactive adjustments to a diagram by allow-

ing selections to be moved by dragging them; the exception 

is selected polygons which can be moved by dragging on 

their interior and scaled along a principle axis if one of 

their edges is dragged.  To apply a scale or rotate transfor-

mation to one or more lines, vertices, or polygons, a “nail” 

needs to be created before dragging on the selection (Figure 

12).  This nail, created with a downward Flick (equivalent 

to the Flicks used by the Microsoft Windows Vista OS), 

serves as the center of rotation or uniform scaling.  A circu-

lar and linear constraint guide is created during this interac-

tion to facilitate only rotating or only scaling the object.  

        

Figure 12. Nails. A nail is input with a flick. Snap-
ping to the circular guide forces rotation about the 
nail; the linear guide constrains scaling; otherwise 
both are done. Light pressure disables snapping. 

We also support a novel Pressure Snapping technique that 

allows users to explicitly enable or disable snapping while 

interacting.  The notion is that with light pressure, objects 

“slide over” snapping detents, but stick with firm pressure.  

Pressure Snapping transitions are detected and disclosed 

using a pressure meter widget based on [19] but augmented 

with a more explicit ToolTip message.  

 

Figure 13. Vertex dragging.  Dragging the inner red 
circle (above) distorts the shape (left). Dragging the 
white outer square (top) Rubber Stretches it (right).  

A selected vertex has a compound widget with a red center 

circle and white outer square which provides direct access 

to two different dragging behaviors (Figure 13).  Dragging 
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the inner circle rubber-bands the edges incident on the ver-

tex.  Dragging the square does Rubber Stretching, a form of 

local scaling, in which edges incident on the vertex move 

without changing their orientation and stretch to maintain 

intersections with other lines.  Rubber Stretching is equiva-

lent to scaling when the vertex of a rectangle is selected. 

We also attempt to preserve perceptually salient characte-

ristics of line intersections when lines are moved because 

we expect that these characteristics are intended and should 

only be broken explicitly by the user.  For instance, if a line 

that ends in a „T‟ junction with an unselected line is moved, 

we preserve the topology of the drawing by sliding the line 

along the unselected line (Figure 14); however, the „T‟ 

junction is broken if the line is dragged off the end of the 

unselected line. In non-„T‟-junction cases, we stretch unse-

lected lines to maintain the drawing topology.  In either 

case, we are attempting to localize the editing effects. 

                

Figure 14. Moving lines (shown in red). (Left) When 
lines terminating in ‘T’ junctions move, they stretch 
and slide. (Right) Otherwise the unselected incident 
lines stretch to stay attached. 

Observations. We initially experimented with placing a 

rotation handle on selections, but were frustrated that sim-

ple rotations around object corners were not possible.  We 

considered extending the widget with a movable center, but 

felt that the Flick gesture offered the same functionality 

more efficiently.  In practice, we have found some users are 

adept at using nails, whereas others have difficulty with its 

unique timing requirements.  Further investigation of wid-

get vs. gestures for rotation and scaling is warranted. 

Pressure Snapping addresses the frustration of unintended 

snapping, although the concept of using pressure to control 

functionality was not expected by our users.  Initial users, 

exposed only to the pressure meter, were unaware that they 

could control snapping to guides.  Subsequent users, ex-

posed to the ToolTip, were able to pick up the technique. 

Disclosing rubber-banding and rubber-scaling functionality 

needs improvement since users are generally unaware ei-

ther that both functions exist or of what they both do.  Cur-

rently there is no GestureBar entry for the vertex widget.  

In contrast, we found that dragging lines ending with and 

without „T‟ junctions was well understood; however, com-

plex selections containing multiple „T‟ junctions along dif-

ferent axes behave less predictably. 

Symmetry, Alignment and Distribution 

Most of the techniques described so far address local prob-

lems of precision; we also use a notion of rulers to facili-

tate control over more global spatial relationships.  Our 

rulers are similar to the sticks [18] with straightforward 

adaptations, using rubber-band resize handles, to be com-

pletely controllable with only the stylus tip-switch.  Drag-

ging the ruler‟s body translates it; and dragging the white 

handles (Figure 15) resize or rotate the ruler about a sliding 

pivot. Our rulers also use a marking menu to switch be-

tween behaviors, including shape and vertex alignment, and 

symmetric mirroring about or even distribution along the 

ruler‟s axis.  A toolbar item on the floating toolbar, appear-

ing when a line is selected, can be used to automatically 

snap and orient the ruler to the selected line. 

 

Figure 15. Symmetry ruler.  Ruler oriented along 
symmetry axis (left.) Hovering over bottom menu 
item previews symmetry (middle.) Result (right.) 

Rulers can be used to make symmetric shapes in two ways.  

After drawing half of a symmetric shape, the ruler can be 

placed along the axis of symmetry, and a marking menu 

aligned with the ruler can be used to reflect the shape 

across the axis of symmetry (Figure 15).  It is important 

that the marking menu be aligned with the ruler, so that the 

two symmetry functions are located along an axis perpen-

dicular to the ruler; thus choosing the appropriate menu 

option feels like “turning a page.”  In typical cases when 

only some drawing elements are part of the intended sym-

metric shape, the scope of the symmetry operation must be 

restricted by first selecting the edges to include in the 

symmetry action.  The ruler can also be locked into a sym-

metry mode in which all edges drawn on one side of the 

ruler are immediately mirrored to the other, and dragging a 

vertex or edge mirrors the interaction on the other side. 

 

Figure 16. Alignment ruler. Hovering over the ‘M’ 
icon displays a marking menu (left).  Choosing the 
Align option (West marking menu item) displays  
two handles on the ruler (right); dragging the ruler 
from these handles pushes shapes or vertices 
(right). The white circles rotate the ruler around a 
movable pivot. 

By selecting „Align‟ on its marking menu, the ruler adds 

shape and vertex alignment handles (Figure 16).  Dragging 

the handles makes the ruler “grab” objects it passes over, 

while grabbing the body allows the ruler to be repositioned.  

Selecting vertices, edges or shapes prior to moving the ruler 

explicitly restricts the scope of alignment to those features. 
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In addition to alignment, the ruler also has an even spatial 

distribution function on its marking menu.  Again, the 

placement of this menu item is significant, since it allows 

users to stroke from the menu along the axis of the ruler as 

if sweeping out a deck of cards.  Any shapes, lines or ver-

tices previously selected would be evenly distributed along 

the axis of the ruler. 

 

Figure 17. Construction lines. Two construction 
lines are created from the left rectangle by tapping 
to select its bottom and top edges. Subsequent 
drawing lines may snap to the construction lines.  

Observations. During demos, people overwhelmingly seem 

to thinks rulers are “very cool.”  However, as designers we 

are less sure of their utility.  They often appear to be more 

heavy-weight than what seems needed to perform a task, 

particularly in the case of alignment.  Thus, we added an 

additional lighter-weight construction line mechanism 

(Figure 17) for aligning shapes when they are being drawn. 

When any line is selected, an infinite construction line is 

created through it.  Subsequent drawing operations will 

snap to construction lines as if they were diagram lines.  

In an early implementation, we restricted alignment with 

the ruler to only move shapes in one direction, the direction 

it was initially pushed.  However, it was not uncommon for 

users to overshoot their target requiring additional interac-

tion to push the elements back in the other direction.  We 

changed the behavior to be grabby so that shapes can now 

be pushed or pulled perpendicular to the ruler axis.   

Working at Different Levels of Detail 

It is frequently necessary to view a diagram at different 

scales, particularly to add local details; we support this with 

gestural zooming. Initially, we recognized one gesture, a 

diagonal line up to the right (for right-handers, and up to 

the left for left-handers) with a zigzag in the middle.  This 

gesture is recognized as it is being drawn and switches to a 

rubber-banded rectangle indicating the zoom region.  Based 

on feedback from some users, we added a second gesture, a 

double circle around the area to be zoomed. In either case, 

zooming in saves the original zoom location on a stack.  To 

zoom out to the previous zoom level, the initial zoom ges-

ture is drawn in reverse. 

Panning is also useful, but appears to be needed less fre-

quently, so we assigned it a simple, but less fluid, press-

and-hold gesture.  The timeout for this gesture is 500ms as 

suggested by previous research [7].  

Observations. It is not clear whether both zoom in gestures 

are needed; initial user samplings are divided, but not 

strongly enough to identify a clear preference.  However, 

despite the prevalence of press-and-hold gestures in PDA 

interactions, we do not feel that it is a fluid gesture for pan-

ning.  Still, given the relative infrequency of panning, the 

gesture may be acceptable and is recognized robustly.  

Formatting and Editing Text 

Properly formatted text can often be the dominant part of a 

diagram, both visually and in terms of human effort. How-

ever, unlike geometry which we attempt to recognize and 

format as soon as it is entered, we only recognize text but 

do not typeset it when it is entered.  This conscious deci-

sion is based on evaluation results for various interactive 

feedback techniques for entering mathematics [23] in 

which interactive typesetting was found to be the least effi-

cient and most distracting technique for rapid input, partic-

ularly if there are no quality guarantees from the recogniz-

er.  Instead we display the output of the Microsoft Win-

dows handwriting recognizer in a 10pt font below the ink 

strokes similar to [6].  Users can then choose to explicitly 

convert their handwritten ink into typeset text when they 

are ready to deal with recognition errors and typesetting 

details. The typeset gesture was designed to not conflict 

with common handwriting notations including mathemati-

cal equations.  It allows users to join two neighboring text 

elements into a single label by drawing the gesture under 

both, or to separate joined text elements into two labels by 

drawing the gesture under each separately (Figure 18). 

Typeset text can be formatted using a pigtail gesture to 

invoke a conventional GUI of text formatting controls, or it 

can be manipulated like other geometric primitives.  

 

Figure 18. Formatting text.  Drawing the format text 
gesture below two neighboring recognized text 
ranges unifies them into a single typeset range.  

Observations. Although we provide a simple correction 

interface after text has been typeset, users seem instinctive-

ly more inclined to scribble erase and redraw their ink more 

neatly until the displayed recognition result is reasonable. 

Also, even though we feel that our current techniques are 

complete in the sense that text can be formatted quite gen-

erally, we think improvements can be made by studying 

workflow patterns more closely. 

DISCUSSION/FUTURE WORK 

Pilot users are generally receptive of the interaction style 

afforded by our Lineogrammer prototype.  The GestureBar, 

although novel, provides familiar-looking support for dis-

covering functionality.  The modeless UI, despite occasion-

al disambiguation and snapping errors, is usable in the 

sense that pilot users seem to enjoy it and are able to work 

around encountered problems.  Pilot users also appear to 

enjoy “exploring” the snapping behavior and “discovering” 

strategies, such as scribble drawing.  Reaction to the ruler is 

very enthusiastic and many users play with it at length. 

With that said, Lineogrammer is only now nearing the point 

where it can support more formal usability evaluations in 

the hands of users who do not have someone to coach them 

through problems they encounter or about strategies they 

overlooked.  Our input disambiguation, snapping, and ges-
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ture recognition algorithms are usable for such preliminary 

testing, but warrant treatment as research areas in their own 

right.  The GestureBar is also a research area, although our 

immediate focus is less on its design and more on its con-

tent. Initial evaluations revealed that specific choices of 

icons, words, etc. deeply impact whether users gained an 

effective understanding of essential gestures and strategies.  

At a more fundamental level, we need to address the prob-

lem that one of the first things that people try to do with 

Lineogrammer is draw curved shapes that the system is not 

able to handle either efficiently or at all.  We are well 

aware that considerable work is required to evolve from our 

current embryonic support for curves.  Nonetheless, we are 

optimistic that the curve drawing techniques we are consi-

dering are at least consistent with our current snapping, 

selection and manipulation techniques. 

CONCLUSION 

We have presented Lineogrammer, a novel pen-centric 

system for creating refined diagrams that seamlessly blends 

the flexibility and fluidity of low-level, line-oriented draw-

ing with the power of interacting at a higher-level with in-

ferred shapes. We presented effective heuristic approaches 

for disambiguating gestures, text and geometric drawing 

elements and for snapping lines to the diagram using a 

simple, effective dynamic snapping threshold.  We also 

designed a variety of complementary techniques for mani-

pulating diagrams at the vertex, line and shape level.  Pre-

liminary testing indicates this is a promising direction and 

can serve as a baseline for evaluating the need for and 

progress in deferred beautification.  

ACKNOWLEDGMENTS 

A Special thanks to Sashi Raghupathy, Andries van Dam 

and the Microsoft Center for Research on Pen-Centric 

Computing at Brown University. 

REFERENCES 

[1]. Arvo, J and Novins, K. Fluid Sketching of Directed 

Graphs. 2006, In Proc. 7th Australasian UI Conference.  

[2]. Bragdon, A.  GestureBar: A Training-Free Approach 

to Disclosing and Teaching Gestures.  Brown University, 

2008.  Tech. Rep.  CS-08-06. 

[3]. Calhoun, C., Stahovich, T., Kurtoglu, T., and Kara, L. 

Recognizing Multi-Stroke Symbols. 2002, In AAAI Spring 

Symposium on Sketch Understanding, pp. 15-23. 

[4]. Davis, R. Magic Paper: Sketch-Understanding Re-

search. 9, 2007, Computer, Vol. 40. 

[5]. Gross, M. and Do, E. Ambiguous Intentions. 1996, In 

Proceedings of UIST'96, pp. 183-192.  

[6]. Guimbretière, F., Stone, M., and Winograd, T. Fluid 

interaction with high-resolution wall-size displays. 2001, In 

Proceedings of  UIST '01, pp. 21-30. 

[7]. Hinckley, K., Baudisch, P., Ramos, G., and Guim-

bretiere, F. Design and Analysis of Delimiters for 

Selection-Action Pen Gesture Phrases in Scriboli. 2005, In 

Proceedings of CHI'05. 

[8]. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka, 

H. Interactive Beautification: A Technique for Rapid 

Geometric Design. 1997, In Proc. of UIST'97.  

[9]. Ku, D., Qin, S.F., and Wright, D. Interpretation of 

Overtracing Freehand Sketching for Geometric Shapes. 

2006, In Proceedings of WSCG‟2006. 

[10]. Kurtenbach, G. and Moran, T. Contextual Animation 

of Gestural Commands. 1994, Graphics Interface '94. 

[11]. Landay, J. and Myers, B. Interactive Sketching for the 

Early Stages of User Interface Design. 1995, In 

Proceedings of CHI '95, pp. 43-50. 

[12]. Lank, E. A Retargetable Framework for Interactive 

Diagram Recognition. 2003, In Proceedings of ICDAR'03. 

[13]. Ohki, Y. and Yamaguchi, Y. 2D Drawing System with 

Seamless Mode Transition. 2005, In Proceedings of Smart 

Graphics, pp. 206-217. 

[14]. Patel, R., Plimmer, B., Grundy, J., and Ihaka, R. Ink 

Features for Diagram Recognition. 2007, In Proceedings of 

SBIM‟07, pp. 131-138. 

[15]. Paulson, B. and Hammond, T. PaleoSketch: Accurate 

Primitive Sketch Recognition and Beautification. 2008, In 

Proceedings of Intelligent User Interfaces '08. 

[16]. Pavlidis, T. and Van Wyk, C. An Automatic Beautifier 

for Drawings and Illustrations. 1985, Proceedings of 

SIGGRAPH'85, pp. 225-234. 

[17]. Plimmer, B. and Grundy, J. Beautifying Sketching-

Based Design Tool Content: Issues and Experiences. 2005, 

In Proceedings of the 6th Australasian Conference on User 

Interface, pp. 31-38. 

[18]. Raisamo, R. An Alternative Way of Drawing. 1999, In 

Proceedings of CHI '99, pp. 175-182. 

[19]. Ramos, G. and Balakrishnan, R. Zliding: Fluid Zoom-

ing and Sliding for High Precision Parameter Manip-

ulation. 2005, In Proceedings of UIST '05. 

[20]. Saund, E., Fleet, D., Larner, D., and Mahoney, J. Per-

ceptually-supported image editing of text and graphics. 

ACM Trans. Graph. 23, 3 (Aug. 2004), pp. 728-728. 

[21]. Ye, M., Viola, P., Raghupathy, S., Sutanto, H., and 

Li, C. Learning to Group Text Lines and Regions in 

Freeform Handwritten Notes. 2005, In Proc. of ICDAR'05.  

[22]. Yu, B. and Cai, S. A Domain-Independent System for 

Sketch Recognition.  2003, In Proc. of the 1st International 

Conference on Computer Graphics and Interactive Tech-

niques in Australasia and South East Asia, ACM Press. 

[23]. Zeleznik, R., Miller, T., and Li, C. Designing UI 

Techniques for Handwritten Mathematics. 2007, In 

Proceedings of SBIM‟07, pp. 91-98. 

[24]. Zeleznik, R. and Miller, T. Fluid Inking: Augmenting 

the Medium of Free-Form Inking with Gestures. 2006, In 

Proceedings of Graphics Interface „06.  

 

170


	ABSTRACT
	INTRODUCTION
	PRIOR WORK
	System DESIGN
	iterative usability tests
	Making techniques and Gestures learnable:
	Gesture Design and Classification
	Text/Geometry Classification

	SNAPPING LINES
	EDITing with gestures AND WIdGETS
	Scribbling as a Drawing Technique
	Lightweight Selections
	Moving, Rotating, Scaling and Pressure Snapping
	Symmetry, Alignment and Distribution
	Working at Different Levels of Detail
	Formatting and Editing Text

	DISCUSSION/FUTURE WORK
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

