

Lineogrammer:

Creating Diagrams by Drawing

Robert Zeleznik, Andrew Bragdon, Chu-Chi Liu, Andrew Forsberg

Box 1910, Brown University

Providence, RI 02912 USA

{bcz, abragdon, cliu, asf}@cs.brown.edu

ABSTRACT

We present the design of Lineogrammer, a diagram-

drawing system motivated by the immediacy and fluidity of

pencil-drawing. We attempted for Lineogrammer to feel

like a modeless diagramming “medium” in which stylus

input is immediately interpreted as a command, text label

or a drawing element, and drawing elements snap to or

sculpt from existing elements. An inferred dual representa-

tion allows geometric diagram elements, no matter how

they were entered, to be manipulated at granularities rang-

ing from vertices to lines to shapes. We also integrate

lightweight tools, based on rulers and construction lines,

for controlling higher-level diagram attributes, such as

symmetry and alignment. We include preliminary usability

observations to help identify areas of strength and weak-

ness with this approach.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces

- Graphical user interfaces.

General terms: Design, Human Factors, Algorithms

Keywords: Drawing, alignment, diagram, pressure, snap-

ping, recognition, gesture, sketching, beautification, ruler,

pen, pen-centric, symmetry, handwriting, disambiguation.

INTRODUCTION

Diagrams drawn with pencil on paper, spanning a vast do-

main of styles, can be created in seconds using only a

lightweight erase-and-redraw editing model; however, they

are also characteristically imprecise. Alternatively, dia-

grams created on computers can leverage sophisticated,

precise editing techniques, but typically require a more

deliberate, strategy-oriented “choose-a-primitive” approach

which can be effortful, limiting and distracting. Our hypo-

thesis, however, is that the familiar, fluid and lightweight

line-based interaction and editing style of pencil and paper

can be seamlessly combined with higher-level shape-based

interactions to provide a best of breed system.

Perhaps in the idealized form of such a system, users would

freely sketch their diagram, as if using pencil and paper,

and, as desired, see a cleanly formatted result. However,

since freehand drawings can be ambiguous even to their

creators and no technology offers perfect recognition re-

sults, such an idealized deferred beautification system may

be unattainable. This raises a research question: under what

conditions is imperfect deferred beautification advanta-

geous over beautifying immediately? As an initial step

toward an answer, we are pushing the boundary of imme-

diate beautification to create a baseline for measuring fu-

ture progress in deferred beautification. Our expectation is

that immediate beautification may be less desirable during

conceptualization phases, but may be potentially superior to

deferred beautification when entering or refining a well-

understood diagram due to a greater sense of control.

Figure 1. Screenshots. Simple drawings composed
of lines, curves, text and polygons. Drawings were
made without an explicit mode switch. The Gestu-
reBar discloses gestures and drawing strategies.

Figure 2. Drawing sequence. Top: Drawn lines are
beautified and snapped. Unwanted segments are
scribbled out. Bottom: text is recognized and typeset,
a vertex is moved, and a zoom gesture is made.

Lineogrammer (Figure 1) reflects five design criteria that

we feel address limitations of prior approaches:

 Disclose gestures and their nuances

 Avoid mode switches for text, geometry, gestures

 Simplify snapping with lightweight editing

 Enable interaction at different perceptual scales

 Make lightweight, special-purpose tools available

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

UIST'08, October 19–22, 2008, Monterey, California, USA.

Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

161

By blending aspects of various known and novel interaction

styles (Figure 2), we believe Lineogrammer is a novel,

best-of-breed approach to creating diagrams on a computer.

Specifically, Lineogrammer highlights contributions in four

synergistic areas, including:

 Heuristics for modelessly disambiguating between

text, geometric drawing elements and command ges-

tures

 A snapping engine that can adjust the input stroke and

existing drawing elements

 UI mechanisms for manipulating the diagram at granu-

larities ranging from vertices and individual line seg-

ments through inferred primitives

 Lightweight tools, including construction lines and a

ruler, which support alignment and symmetry

PRIOR WORK

There are numerous commercial systems for creating pre-

cise, domain-specific diagrams, such as Microsoft Visio.

However, these systems are tuned to create complex but

rigid structures and not the general diagrams facilitated by

Lineogrammer‟s literal drawing metaphor. There are also

commercial systems for creating general purpose diagrams,

such as Microsoft PowerPoint. With a few exceptions, like

Corel Grafigo 2, these systems require users to interact

modally to find and instantiate primitives, and do not allow

low-level shape editing of primitives at the level of lines.

Although quite powerful, these systems do not support the

familiar strategies and techniques of pencil and paper draw-

ing. There are also several systems that provide sketch-

based interactive beautification only for domain-specific

diagrams, such as a modeless system for sketching directed

graphs [1].

In contrast, relatively few general-purpose diagramming

systems have been developed with sketch based interfaces.

Saund‟s image editor [20] exploited perceptual structure to

simplify selection and manipulation of visual structures in

bitmap images. We apply similar notions to facilitate the

manipulation of structured vector drawings at different per-

ceptual scales ranging from the vertex, to line segment, to

polygon. Igarashi [8] presented the most similar system to

ours, Pegasus which introduced the term interactive beauti-

fication, and reviewed the relative merits of interaction

beautification to other approaches [5] [11] [16]. In essence,

interactive beautification amortizes the complex errors and

error recovery associated with batch processing a sketch

through an incremental, monotonic snapping engine that

considers local and global context, but is much simpler than

constraint-based approaches.

Lineogrammer both extends Pegasus and adopts a different

approach to snapping which reduces display clutter. Lineo-

grammer‟s extensions include: recognizing text, curves,

and single-stroke polygons, a multi-function ruler widget,

and a range of gestural and direct manipulation techniques

for multi-scale editing and view control. However, Lineo-

grammer approaches snapping differently than Pegasus.

When Pegasus displayed more than one snapping alternate,

we observed that users often were distracted or confused

and did not choose a correct alternate when it was dis-

played or spent considerable time searching for the correct

alternate whether or not it was actually displayed. Thus,

with Lineogrammer, we explore the notion that the overall

cost of a complex alternates display is greater than the cost

of more demand-driven correction techniques, such as join-

ing lines with a connecting stroke, dragging vertices, or just

erasing and redrawing. Like Pegasus, Lineogrammer makes

the best-fit snap line be the default interpretation, but unlike

Pegasus, Lineogrammer will show at most one alternate. In

addition, Lineogrammer‟s snapping techniques are speed

dependent which enables users to effectively override

snapping by drawing slowly and carefully.

PaleoSketch [15] provides interactive beautification by

best-fitting an input stroke with one or more of eight

classes of higher-level geometric primitives. Lineogram-

mer complements a simplified version of this technique

(that only supports complex fits for polylines) with incre-

mental techniques that use the existing drawing as context

for snapping simple primitives entered one at a time.

The alternative of deferred beautification has shown prom-

ise for 3D modeling particularly using oversketching tech-

niques [9]. For 2D drawing, Yu [22] combined interactive

(similar to [15]) and deferred beautification, but most work

has focused either on imprecise or domain-specific struc-

tured drawings[4][12]. Plimmer, for example, used deferred

beautification with interactive feedback of the recognition

state when sketching the domain-specific, highly structured

geometries needed for UML diagrams and GUI forms [17].

More recently, Ohki presented a 2D drawing system [13]

that supports a related notion of constructing drawings

based on set operations over primitive shapes; however it is

not modeless in the sense that shapes are not drawn natural-

ly with a pen and interaction requires an explicit menu se-

lection to change tools. Ohki‟s system also demonstrated

some higher-level suggestions, for instance to create sym-

metric objects and to perform iterative placement, that

would be interesting to explore within Lineogrammer.

There are several techniques for distinguishing between

handwritten text and drawings [14][21], including the Mi-

crosoft Windows InkDivider. Based on Patel‟s studies [14],

we hand-optimized a variant of her binary classification

scheme. Our technique supports the interactive beautifica-

tion constraint that stroke classifications are fixed after

1/2sec by combining our interactive symbol recognizer [23]

with rules based on other spatial and temporal features.

PostBrainstorm [6] is related in that new strokes are asso-

ciated with existing objects and typeset recognition is dis-

played below all “text-like” strokes.

Lineogrammer‟s rulers are closely related to Alignment

Sticks [18], but differ because Lineogrammer‟s interactions

are designed for uni-manual interaction and provide addi-

tional functionality, including symmetry operations.

SYSTEM DESIGN

The virtue of pencil drawing derives from its unique com-

bination of expressiveness and lack of modes–in short, it is

transparent. In designing Lineogrammer, we attempted to

162

replicate aspects of this style by replacing the cognitively

heavyweight UI management tasks, such as foraging

through toolbars, with functionality centered on drawing

elements. Thus, Lineogrammer has no conventional tool-

bars; instead it is a blank drawing surface that, for discove-

rability of strategies and functionality, is docked to an ex-

planatory “toolbar”. As with pencil and paper, users draw

“commands, ” text and geometry interchangeably, but with

assistance provided by a snapping and shape inference en-

gine and formatting tools, to create refined results.

As with any complex system, numerous interdependent

design choices were made at varying levels of detail. For

simplicity, however, we present the design in terms of the

following major categories:

 Making techniques and gestures learnable

 Classifying input strokes

 Snapping lines

 Editing with gestures and widgets

ITERATIVE USABILITY TESTS

Over the course of the development of Lineogrammer, we

conducted three rounds of usability testing. We include

preliminary observations gleaned from observing 10 pilot

users (6 female/4 male,aged 18-30, right-handed), recruited

from the general population of Brown University, including

four novices. Eight subjects had no Tablet PC experience.

Tests were conducted on a Toshiba Portégé M200 Tablet

PC with 1 GB of RAM and a 60 GB hard drive. In the first

pilot round of testing, the software was still very early and

two subjects participated, with the goal of getting rough

feedback on the overall approach. Five subjects were then

brought in for the second round; this version did not yet

include stroke alternates, zoom, the floating toolbar, or se-

lection repetition. Finally, three subjects took part in the

third round with a much-improved version of the software

reflecting many refinements based on previous testing.

Subjects were given a series of tasks of two types: verbal

and visual. Verbal tasks consisted of a verbal description,

such as “draw your family tree using boxes, lines and text”

or “draw a cartoon house with a door, window, and a chim-

ney.” Visual tasks consisted of printed diagrams, which

users were asked to replicate. No training or hints were

given, however for some tasks we asked users to make use

of a specific feature, referencing it by name.

In the sections that follow, we include an observations sub-

section detailing anecdotal results from these tests.

MAKING TECHNIQUES AND GESTURES LEARNABLE:

We have explored a variety of techniques for training no-

vice users in pen-centric and gestural systems, including

providing heads-up displays, online reference manuals,

tutorials, and menu shortcuts. However, our observation is

that users do not seem receptive either to a priori learning,

or having information pushed at them. Instead, they seem

to want to explore information narrowly, on-the-fly that

matches their immediate task or mental goal.

Thus, we designed a GestureBar[2], inspired by [10][24], to

represent all system operations, including some critical

multi-step techniques, as toolbar items (Figure 3). Unlike

conventional toolbars, GestureBar items do not perform

functions but rather indicate how to perform them. Toolbar

items display one or more annotated animations and pro-

vide a „Practice‟ area for exploring gestures or techniques

with the assistance of nuanced, targeted feedback.

Figure 3. Gesture Bar. The user chooses Zoom to
see related gestures along with a Practice area.

Although GestureBar is still being formally evaluated, our

pilot tests indicate that it is more effective at disclosing

gestural interactions than conventional crib sheets, at least

for novice users. Users with no experience whatsoever with

gestural UIs have been able to find, learn and perform all of

Lineogrammer‟s gestures without human assistance over

the course of half hour to hour long sessions.

CLASSIFYING INPUT STROKES:

There is no a priori distinction between drawn strokes that

represent geometry (line, polyline, and curve) and those

that represent text (print or cursive) or gestural commands.

Additionally, the same stroke instance can logically fall

into more than one classification (i.e., a circular stroke can

be text or circle geometry). Thus we developed a set of

empirically-derived recognition heuristics for classifying a

stroke when it is entered. These heuristics are encoded in

an ad hoc rule base of procedural methods, although other

implementations are possible and might be superior.

Gesture Design and Classification

To assist determining whether an input stroke indicates a

gesture, we designed our gestures as a balance between

visual/motor appropriateness and machine recognizability.

This design strategy by definition makes it straightforward

to distinguish gestures from other input strokes since we

avoid gestures which are hard to disambiguate using only a

stroke segmentation algorithm similar to Calhoun‟s [3] and

a set of simple geometric rules. Since gestures are visually

transient, we attempt to increase awareness of their invoca-

tion by fading an icon away at the location where they were

recognized that matches the toolbar icon for their function.

The delete gesture is discussed in detail the Editing section.

The lasso gesture is related to the pigtail lassos used in

Scriboli[7], but is recognized procedurally without needing

a modifier key by three successive features: a nearly closed

loop, a high-curvature cusp, and a straight tail. This defini-

tion recognizes both pigtails and non self-intersecting tails,

and facilitates control over the exact boundary of the lasso.

163

Table 1 summarizes design issues of the full gesture set.

Delete – defined broadly as stroke with
>= 3 sharp cusps. Broad definition is
necessary because of its frequent use.
Details above.

 Join lines – is essentially not a gesture,
but what might be done on paper to join
lines.

Lasso select – defined broadly as a
closed loop with a sharp, straight hook-
like retrace at the end.

Typeset text (top) – underline was our
first choice, but confusable for math.

Edit properties (bot.) – almost any ges-
ture would do, but ‘e’-like loop was
mnemonic.

 Undo (top); Redo (bot.) Symmetric ges-
tures to be memorable. Straight lines
were desired but were ambiguous w/
text & geometry.

 Zoom in (top) – flattened diagonal zig-
zag from bottom-left to top-right that
transitions well to interactive zoom rec-
tangle.
Zoom in (bot.) – Some users found
double-circle to be more natural and
more reliable.

Zoom out – to be memorable, this is the
Zoom In gesture reversed.

Press & hold Pan – not considered ideal because of
pause, but commonly used in PDAs

Line, curve,
ellipse, poly-
gon

Literal gestures for creating geometry
are really shape recognition, not ges-
tures. These need to be disambiguated
from text.

Table 1. List of Gestures. Red dots indicate the
start of the gesture when important. Green indicate
existing diagram context.

Observations. We found users were for the most part aware

of all the systems gestures and were in fact eager to learn

them. In initial testing, some users performed the Typeset

Text gesture without a sufficiently sharp hook at the end or

without a hook at all. We addressed this by adding text

tool tips in the GestureBar which point out important de-

tails of the gesture. In later testing, we noticed no systemic

barriers with gestures, although the zigzag zoom gestures

were harder for users to perform consistently correctly.

Text/Geometry Classification

Input strokes that are not gestures must either be text or

geometry. Although sophisticated techniques are the sub-

ject of ongoing research [21][14], they are not the focus of

our work so we use a simple but workable set of heuristics

which consider the size, geometry, and spatio-temporal

relationship of the input stroke to pre-classified diagram

elements. An initial criterion that trivially handles many

cases is to restrict the maximum size of text input to 2cm,

which seems reasonable since larger text is unusual but can

still be easily achieved by choosing a large font or interac-

tively scaling. In addition, simple, single-stroke closed

polygons and many character symbols, can be easily distin-

guished using a recognizer trained to distinguish the salient

differences of polygons and text symbols. However, cir-

cles, straight lines and polylines present specific disambig-

uation challenges, for instance, from symbols like „0‟, „1‟,

and „w‟ respectively – discussed in more detail below.

Existing Context. Existing diagram context provides a
foundation for disambiguating text and geometry (Figure
4). For example, if a straight vertical line stroke is drawn
next to a known text elements and of a similar size, we will
classify it as a text symbol (‘1’, or ‘l’). Similarly, if that
same stroke were drawn starting on, ending on, or intersect-
ing an existing line stroke, then we will classify it as a line.
Neither of these heuristics is guaranteed to work, but em-
pirical observations indicate that leveraging local context,
when it exists, significantly reduces mis-classifications.

Isolated strokes. The real disambiguation challenge occurs

when a stroke is drawn in isolation, such as the start of a

word or the beginning of a multi-stroke shape. In these

situations, we try two metrics: the ratio of the stroke length

to its number of cusps, and a yes/no classification provided

by our single character recognizer. Cursive words will be

classified as text based on the first metric. The second me-

tric matches input strokes to a broad, writer-independent set

of character symbol templates and classifies the stroke as

text if it matches any template. We intentionally omit tem-

plates for „0‟, „1‟, and „i‟ because they would also match

common strokes intended as geometry. Instead, for funda-

mentally ambiguous strokes in isolation, we rely on a tem-

poral recognition strategy where slow input is biased to-

ward drawing elements and fast input toward text. For ex-

ample, a straight line (or a circular stroke) would be placed

on a deferred recognition queue. After 500 ms, the queued

stroke would be classified as a drawing element (line or

circle) unless a new stroke is drawn nearby that the recog-

nizer labels as text with high confidence. In this case, the

queued stroke would be recognized as a „1‟. This implies

that some characters, like „0‟, cannot be recognized in iso-

lation. When text is misclassified as geometry, the Typeset

gesture can be used to coerce the geometry back to text.

We support curves, circles and ellipses, although our im-

plementation of them is primitive and would benefit from

Paulson‟s approach [15]. The curved geometries we do

support are treated inefficiently as polylines with unselect-

able vertices. In addition, our heuristics for distinguishing

complex curves from text requires more work.

Observations. We initially allowed text to be drawn at any

size which meant that all isolated lines, no matter how

large, would be subject to the 500ms recognition delay and

Figure 4. Text/drawing disambiguation. A leading ‘0’
or the initial stroke of a ‘T’ requires a 500ms delay
during which an additional text stroke must be input.

164

misrecognition as text. Pilot users, however, never drew

large text, so we restricted text classification to strokes

<2cm high. This significantly reduced false positive text

recognition, although false positive geometry recognition

can be a problem in dense input that necessitates zooming.

Since we deliberately support the strategy that slow input is

biased away from text recognition, we observed that some

novice users had initial difficulties because they block

printed text in a slow, overly deliberate manner, as com-

pared to their writing speed when we asked them to write

on paper. We expect that this problem can be mitigated by

adding explicit detail in the GestureBar.

SNAPPING LINES

Although natural and expressive, hand-drawn input is often

imprecise, particularly as writing speed increases. Conse-

quently, Lineogrammer attempts to snap input geometry to

existing diagram features (vertices, edges, midpoints, and

polygon centers) using a tolerance which is dynamically

adjusted based on drawing speed. However, since snapping

occurs while the diagram is being constructed when there is

limited context, we cannot expect a unique, monotonic (i.e.,

affecting only the input stroke) snap result to be sufficient.

Suggestive techniques attempt to ameliorate the uniqueness

problem by presenting multiple potential snap results in

situ for the user to select from [8]. Since the range of alter-

nates for any given line can be combinatorial quite large,

culling must be done to achieve a manageable set. Even

when Pegasus presents only three alternates, the display

can look cluttered and be confusing or distracting; adding

more alternates increases the odds of the intended result

being available but is visually even less acceptable.

Figure 5. Stroke alternates. (Left) The dashed line
alternate closely matches the input stroke; the solid
vertically-snapped line is the default. (Right) The al-
ternate is the line between the two centers; the de-
fault is the same line showing only the segment be-
tween the rectangles. Tapping a dashed line
switches the line to that alternate.

We instead treat snapping optimistically as a lightweight

aid to clarified drawing, not as a sole solution, and provide

at most a single alternate, represented by a dashed line

(Figure 5). Our experience is that simple editing options,

such as erasing and carefully redrawing or interactively

manipulating, are preferable to the distraction of complex

alternate displays which may not contain the correct result.

The snapping algorithm can snap both an input line‟s orien-

tation to the principal axes or to other lines and their mirror

images, and perpendiculars, and also its endpoints to exist-

ing vertices or lines (midpoints and shape center targets are

highlighted upon approach.) The algorithm is non-

monotonic and thus, after snapping the input line, the algo-

rithm may modify existing lines; however, the algorithm

will only extend, but not re-orient, existing lines to snap to

the input line. When a single input stroke is recognized as a

polyline or polygon, additional considerations apply to en-

sure the integrity of the resulting shape.

We consider this approach optimistic because we produce

an alternate only for the nearest orientation snap, but not

for different endpoint snaps. Our expectation is that when

snapping targets are clustered, users will move more slowly

causing the snapping threshold to be reduced; when snap

targets are isolated, they will be able to move faster, in-

creasing the snapping thresholds, and still benefit from

snapping. The dynamic snapping radius for vertices is:

speed = arclength of last 10 samples (~ 1/10th sec)

radius = min(stroke.Length/4, max(.1in, min(.3in,speed)))

Controlling line orientation, however, uses an alternate,

since orientation targets are often not visible or are not lo-

calized to the stylus path which makes unintentional snap-

ping more likely. Thus, when a line orientation is snapped,

we show an alternate, defined by the line‟s original start

and end point, which overrides the snap. In either case, the

line‟s endpoints will be snapped if within the threshold of a

feature; however, when the line orientation has been

snapped, the endpoints can only snap to features that are

collinear with it.

Figure 6. Joining lines. Mis-snapped lines can be
joined by overdrawing (shown in red for emphasis).

Observations. We initially used a static snapping threshold,

but found that it, like grids, too often caused undesired

snapping. Turning down this threshold tended to avoid un-

wanted snapping but forced users to draw everything with

deliberation. With the dynamic threshold, users qualitative-

ly seem to have control snapping better, although more

sophisticated techniques are no doubt possible. When in-

tended snaps are missed, overdrawing joining lines is natu-

ral and usually fixes the problem (Figure 6.) In other cases,

users instinctively seem to adopt the habit of scribbling out

mis- or un-snapped lines and redrawing them more slowly

to gain the advantage of the tighter snapping threshold.

Visually indicating this threshold by highlighting the near-

est target might also improve the experience but is compli-

cated since snapping tolerances are a function of the entire

stroke. A caution is that several users found feedback of

even a single alternate was distracting.

EDITING WITH GESTURES AND WIDGETS

Lineogrammer supports a suite of additional interactive

functionality which complements the basic draw-

ing/snapping input model. Although some users are suffi-

ciently skilled at drawing that they may be able to accurate-

165

ly enter a final design, more typical users would need to

manipulate their designs to gain better control and perspec-

tive over the design space. The techniques we describe in

this section work collectively to facilitate lightweight ex-

ploration and flexible workflows and include:

 Scribble “drawing”

 Lightweight selections

 Moving, rotating, scaling, Pressure Snapping

 Symmetry, alignment and distribution

 Working at different levels of detail

 Formatting text

Figure 7. Deleting. (Left) A notch is “sculpted” from
a rectangle. (Right) Deleting the intersected line
segment causes a rectangle to be inferred.

Scribbling as a Drawing Technique

Besides drawing lines, perhaps the most important interac-

tion technique in Lineogrammer is the scribble delete ges-

ture. The idea is not just that scribbling is an easy almost

reflexive way to correct imprecise drawings, but more im-

portantly that it affords a powerful subtractive sculpting

strategy for creating shapes by successive refinement (Fig-

ure 7). Unlike conventional shape palette approaches,

Scribble Drawing allows users to draw a simple approx-

imate shape, intersect it with refinement lines, and then

remove line segments that are inferred from the intersection

points. For this approach to be effective the transition be-

tween drawing and deleting must be fluid and so we rely on

a very broadly defined scribble gesture that allows users to

perform it in arbitrary contexts in ways that feel natural to

them. This approach is similar to [8], except we delete all

inferred line segments intersected by the scribble, not just

the first. Additionally, we need to disambiguate scribbles,

defined broadly as >=3 somewhat sharp cusps from poten-

tially similar cursive text. Instead of relying on ambiguous

geometrical measures, we use temporal and spatial context.

If a scribble occurs within 500ms of a previously classified,

neighboring text stroke and does not intersect it more than

5 times, we treat it as additional text. Scribbles that do not

overlap existing elements will always be text.

Observations. The scribble gesture is typically the first

thing mentioned when users are asked to name something

they like in the system; they frequently use it reflexively.

Lightweight Selections

To interact with a diagram, the user must communicate a

selection scope. To maximize expressivity, we wanted it to

be easy to select arbitrary contiguous and disjoint collec-

tions of vertices, lines and polygons, but at the same time

we wanted selection to be cognitively lightweight. Pre-

vious work demonstrated a powerful perceptually-based

approach to trace out selection paths or poses [20]. Al-

though we like this approach, it presents integration chal-

lenges for our modeless interaction environment, and we

felt that for many, if not most, common cases, a simpler

tap-based multi-selection mechanism [7] would be prefera-

ble. Still, we augment tap selection with a Lasso gesture

can for selecting larger sets of neighboring elements. In

either case, selections are additive such that tapping on

unselected drawing elements adds them to the current se-

lection; tapping on a selected element de-selects it, and

tapping on the background de-selects everything. Tap se-

lection of vertices is straightforward, so we will only dis-

cuss tap selection of higher-level diagram features.

Figure 8. Selecting lines. (Left) Tapping selects
whole lines ignoring intersections. (Right) Scrib-
bling then deletes only the selection.

Line Selection. Tapping on a line can be ambiguous when

the line intersects with other lines. For selection, we ignore

the inferred line segment boundaries and select the entire

line when any part of it is tapped (Figure 8). To restrict

selection to just an inferred line segment, the line must be

explicitly split by tapping on the point of intersection to

create a vertex. The reason we chose this behavior is that

collinear artifacts generally do not occur unless intended

and thus we want to preserve collinearity across selec-

tion/manipulation actions. We note that the opposite as-

sumption is made for deletion which is typically used to

clean up errant line segments and to perform subtractive

drawing. The difference between selection and deletion

can be exploited: if the user wants to delete an entire line,

instead of trying to scribble over each inferred line seg-

ment, they can instead tap anywhere on the line to select

the whole line, and then scribble over any part of the selec-

tion to delete the entire selection.

Figure 9. Polygon selection. There is no front-to-
back ordering for inferred polygons. Clicking the
overlapped trapezoid will select one or more other
polygons which can be deselected by tapping them.

Polygon Selection. Although, a polyline or polygon can be

selected by sequentially tapping on all of its edges, tapping

inside a polygon is more convenient. Since users don‟t

explicitly create polygons – they are inferred automatically

by detecting closed loops of edges – issues of ambiguity

again arise. The dominant heuristic applied is to consider

166

any closed loop of lines that does not traverse any line in-

tersections to be a polygon. However, ambiguities may

still exist because inferred polygons may overlap one

another (Figure 9). If a tap falls within more than one over-

lapping polygon, then they all are selected; tapping on po-

lygons that were not intended de-selects them. The excep-

tion is that we do not select any polygon that completely

contains another polygon that was also selected. Alterna-

tively, selecting a containing polygon automatically selects

all contained diagram elements, which we believe is gener-

ally desirable for manipulation. Nonetheless, selection of

certain types of tiled shapes, among others, can require

multiple taps or lassoing. Going forward, particularly as

we extend support for filling inferred polygons, we believe

that additional design consideration is warranted.

Figure10. Floating toolbar. A marking menu (green
triangle) that was expanded to show toolbar items.

Associated with every selection, is a local floating toolbar

(Figure 10) for accessing less critical functionality, includ-

ing: setting colors and thicknesses, grouping the selected

elements, making all selected objects be of the same size,

and a Copy handle for copying the selection. A drag handle

supports repeated copying (Figure 11).

Figure 11 Repeated copying: Dragging the ‘…’ tool
item creates default-spaced copies (left.) Releasing
and dragging in the green area changes the num-
ber of copies (right.) Tapping ends the action.

Observations. We had observed that users often created a

selection, moved it and then started drawing or attempted to

select something else. In the former case, they did not

usually notice that the selection remained as they started to

draw which would later generate confusion. In the latter

case, they would inadvertently find themselves extending

the original selection instead of replacing it. In response to

this, we now automatically deselect everything when a new

stroke is drawn or after a selection is moved and another

primitive is selected. We also noticed that several users

who were explicitly informed that they could press the sty-

lus button to select objects with a conventional lasso (i.e.,

no gestural „hook‟ required) preferred instead to learn the

lasso gesture. A more thorough follow-up investigation of

the preference for gestures over stylus buttons is warranted.

As for the floating toolbar, we noticed that it sometimes got

in the way, especially after we extended its functionality

with more buttons. We tried to address this scalability is-

sue by replacing the toolbar with a marking menu. Howev-

er, we then noted that the nature of the marking menu made

people less aware of its functionality. We now collapse the

toolbar, but bias interaction toward expanding it since it

looks and acts like an expandable ribbon. That is, the East

marking menu item allows users to seemingly drag the

toolbar out of the menu (Figure 10.) More advanced users

can still benefit from the arguably more fluid and efficient

traditional way of invoking a marking menu item.

Moving, Rotating, Scaling and Pressure Snapping

We facilitate interactive adjustments to a diagram by allow-

ing selections to be moved by dragging them; the exception

is selected polygons which can be moved by dragging on

their interior and scaled along a principle axis if one of

their edges is dragged. To apply a scale or rotate transfor-

mation to one or more lines, vertices, or polygons, a “nail”

needs to be created before dragging on the selection (Figure

12). This nail, created with a downward Flick (equivalent

to the Flicks used by the Microsoft Windows Vista OS),

serves as the center of rotation or uniform scaling. A circu-

lar and linear constraint guide is created during this interac-

tion to facilitate only rotating or only scaling the object.

Figure 12. Nails. A nail is input with a flick. Snap-
ping to the circular guide forces rotation about the
nail; the linear guide constrains scaling; otherwise
both are done. Light pressure disables snapping.

We also support a novel Pressure Snapping technique that

allows users to explicitly enable or disable snapping while

interacting. The notion is that with light pressure, objects

“slide over” snapping detents, but stick with firm pressure.

Pressure Snapping transitions are detected and disclosed

using a pressure meter widget based on [19] but augmented

with a more explicit ToolTip message.

Figure 13. Vertex dragging. Dragging the inner red
circle (above) distorts the shape (left). Dragging the
white outer square (top) Rubber Stretches it (right).

A selected vertex has a compound widget with a red center

circle and white outer square which provides direct access

to two different dragging behaviors (Figure 13). Dragging

167

the inner circle rubber-bands the edges incident on the ver-

tex. Dragging the square does Rubber Stretching, a form of

local scaling, in which edges incident on the vertex move

without changing their orientation and stretch to maintain

intersections with other lines. Rubber Stretching is equiva-

lent to scaling when the vertex of a rectangle is selected.

We also attempt to preserve perceptually salient characte-

ristics of line intersections when lines are moved because

we expect that these characteristics are intended and should

only be broken explicitly by the user. For instance, if a line

that ends in a „T‟ junction with an unselected line is moved,

we preserve the topology of the drawing by sliding the line

along the unselected line (Figure 14); however, the „T‟

junction is broken if the line is dragged off the end of the

unselected line. In non-„T‟-junction cases, we stretch unse-

lected lines to maintain the drawing topology. In either

case, we are attempting to localize the editing effects.

Figure 14. Moving lines (shown in red). (Left) When
lines terminating in ‘T’ junctions move, they stretch
and slide. (Right) Otherwise the unselected incident
lines stretch to stay attached.

Observations. We initially experimented with placing a

rotation handle on selections, but were frustrated that sim-

ple rotations around object corners were not possible. We

considered extending the widget with a movable center, but

felt that the Flick gesture offered the same functionality

more efficiently. In practice, we have found some users are

adept at using nails, whereas others have difficulty with its

unique timing requirements. Further investigation of wid-

get vs. gestures for rotation and scaling is warranted.

Pressure Snapping addresses the frustration of unintended

snapping, although the concept of using pressure to control

functionality was not expected by our users. Initial users,

exposed only to the pressure meter, were unaware that they

could control snapping to guides. Subsequent users, ex-

posed to the ToolTip, were able to pick up the technique.

Disclosing rubber-banding and rubber-scaling functionality

needs improvement since users are generally unaware ei-

ther that both functions exist or of what they both do. Cur-

rently there is no GestureBar entry for the vertex widget.

In contrast, we found that dragging lines ending with and

without „T‟ junctions was well understood; however, com-

plex selections containing multiple „T‟ junctions along dif-

ferent axes behave less predictably.

Symmetry, Alignment and Distribution

Most of the techniques described so far address local prob-

lems of precision; we also use a notion of rulers to facili-

tate control over more global spatial relationships. Our

rulers are similar to the sticks [18] with straightforward

adaptations, using rubber-band resize handles, to be com-

pletely controllable with only the stylus tip-switch. Drag-

ging the ruler‟s body translates it; and dragging the white

handles (Figure 15) resize or rotate the ruler about a sliding

pivot. Our rulers also use a marking menu to switch be-

tween behaviors, including shape and vertex alignment, and

symmetric mirroring about or even distribution along the

ruler‟s axis. A toolbar item on the floating toolbar, appear-

ing when a line is selected, can be used to automatically

snap and orient the ruler to the selected line.

Figure 15. Symmetry ruler. Ruler oriented along
symmetry axis (left.) Hovering over bottom menu
item previews symmetry (middle.) Result (right.)

Rulers can be used to make symmetric shapes in two ways.

After drawing half of a symmetric shape, the ruler can be

placed along the axis of symmetry, and a marking menu

aligned with the ruler can be used to reflect the shape

across the axis of symmetry (Figure 15). It is important

that the marking menu be aligned with the ruler, so that the

two symmetry functions are located along an axis perpen-

dicular to the ruler; thus choosing the appropriate menu

option feels like “turning a page.” In typical cases when

only some drawing elements are part of the intended sym-

metric shape, the scope of the symmetry operation must be

restricted by first selecting the edges to include in the

symmetry action. The ruler can also be locked into a sym-

metry mode in which all edges drawn on one side of the

ruler are immediately mirrored to the other, and dragging a

vertex or edge mirrors the interaction on the other side.

Figure 16. Alignment ruler. Hovering over the ‘M’
icon displays a marking menu (left). Choosing the
Align option (West marking menu item) displays
two handles on the ruler (right); dragging the ruler
from these handles pushes shapes or vertices
(right). The white circles rotate the ruler around a
movable pivot.

By selecting „Align‟ on its marking menu, the ruler adds

shape and vertex alignment handles (Figure 16). Dragging

the handles makes the ruler “grab” objects it passes over,

while grabbing the body allows the ruler to be repositioned.

Selecting vertices, edges or shapes prior to moving the ruler

explicitly restricts the scope of alignment to those features.

168

In addition to alignment, the ruler also has an even spatial

distribution function on its marking menu. Again, the

placement of this menu item is significant, since it allows

users to stroke from the menu along the axis of the ruler as

if sweeping out a deck of cards. Any shapes, lines or ver-

tices previously selected would be evenly distributed along

the axis of the ruler.

Figure 17. Construction lines. Two construction
lines are created from the left rectangle by tapping
to select its bottom and top edges. Subsequent
drawing lines may snap to the construction lines.

Observations. During demos, people overwhelmingly seem

to thinks rulers are “very cool.” However, as designers we

are less sure of their utility. They often appear to be more

heavy-weight than what seems needed to perform a task,

particularly in the case of alignment. Thus, we added an

additional lighter-weight construction line mechanism

(Figure 17) for aligning shapes when they are being drawn.

When any line is selected, an infinite construction line is

created through it. Subsequent drawing operations will

snap to construction lines as if they were diagram lines.

In an early implementation, we restricted alignment with

the ruler to only move shapes in one direction, the direction

it was initially pushed. However, it was not uncommon for

users to overshoot their target requiring additional interac-

tion to push the elements back in the other direction. We

changed the behavior to be grabby so that shapes can now

be pushed or pulled perpendicular to the ruler axis.

Working at Different Levels of Detail

It is frequently necessary to view a diagram at different

scales, particularly to add local details; we support this with

gestural zooming. Initially, we recognized one gesture, a

diagonal line up to the right (for right-handers, and up to

the left for left-handers) with a zigzag in the middle. This

gesture is recognized as it is being drawn and switches to a

rubber-banded rectangle indicating the zoom region. Based

on feedback from some users, we added a second gesture, a

double circle around the area to be zoomed. In either case,

zooming in saves the original zoom location on a stack. To

zoom out to the previous zoom level, the initial zoom ges-

ture is drawn in reverse.

Panning is also useful, but appears to be needed less fre-

quently, so we assigned it a simple, but less fluid, press-

and-hold gesture. The timeout for this gesture is 500ms as

suggested by previous research [7].

Observations. It is not clear whether both zoom in gestures

are needed; initial user samplings are divided, but not

strongly enough to identify a clear preference. However,

despite the prevalence of press-and-hold gestures in PDA

interactions, we do not feel that it is a fluid gesture for pan-

ning. Still, given the relative infrequency of panning, the

gesture may be acceptable and is recognized robustly.

Formatting and Editing Text

Properly formatted text can often be the dominant part of a

diagram, both visually and in terms of human effort. How-

ever, unlike geometry which we attempt to recognize and

format as soon as it is entered, we only recognize text but

do not typeset it when it is entered. This conscious deci-

sion is based on evaluation results for various interactive

feedback techniques for entering mathematics [23] in

which interactive typesetting was found to be the least effi-

cient and most distracting technique for rapid input, partic-

ularly if there are no quality guarantees from the recogniz-

er. Instead we display the output of the Microsoft Win-

dows handwriting recognizer in a 10pt font below the ink

strokes similar to [6]. Users can then choose to explicitly

convert their handwritten ink into typeset text when they

are ready to deal with recognition errors and typesetting

details. The typeset gesture was designed to not conflict

with common handwriting notations including mathemati-

cal equations. It allows users to join two neighboring text

elements into a single label by drawing the gesture under

both, or to separate joined text elements into two labels by

drawing the gesture under each separately (Figure 18).

Typeset text can be formatted using a pigtail gesture to

invoke a conventional GUI of text formatting controls, or it

can be manipulated like other geometric primitives.

Figure 18. Formatting text. Drawing the format text
gesture below two neighboring recognized text
ranges unifies them into a single typeset range.

Observations. Although we provide a simple correction

interface after text has been typeset, users seem instinctive-

ly more inclined to scribble erase and redraw their ink more

neatly until the displayed recognition result is reasonable.

Also, even though we feel that our current techniques are

complete in the sense that text can be formatted quite gen-

erally, we think improvements can be made by studying

workflow patterns more closely.

DISCUSSION/FUTURE WORK

Pilot users are generally receptive of the interaction style

afforded by our Lineogrammer prototype. The GestureBar,

although novel, provides familiar-looking support for dis-

covering functionality. The modeless UI, despite occasion-

al disambiguation and snapping errors, is usable in the

sense that pilot users seem to enjoy it and are able to work

around encountered problems. Pilot users also appear to

enjoy “exploring” the snapping behavior and “discovering”

strategies, such as scribble drawing. Reaction to the ruler is

very enthusiastic and many users play with it at length.

With that said, Lineogrammer is only now nearing the point

where it can support more formal usability evaluations in

the hands of users who do not have someone to coach them

through problems they encounter or about strategies they

overlooked. Our input disambiguation, snapping, and ges-

169

ture recognition algorithms are usable for such preliminary

testing, but warrant treatment as research areas in their own

right. The GestureBar is also a research area, although our

immediate focus is less on its design and more on its con-

tent. Initial evaluations revealed that specific choices of

icons, words, etc. deeply impact whether users gained an

effective understanding of essential gestures and strategies.

At a more fundamental level, we need to address the prob-

lem that one of the first things that people try to do with

Lineogrammer is draw curved shapes that the system is not

able to handle either efficiently or at all. We are well

aware that considerable work is required to evolve from our

current embryonic support for curves. Nonetheless, we are

optimistic that the curve drawing techniques we are consi-

dering are at least consistent with our current snapping,

selection and manipulation techniques.

CONCLUSION

We have presented Lineogrammer, a novel pen-centric

system for creating refined diagrams that seamlessly blends

the flexibility and fluidity of low-level, line-oriented draw-

ing with the power of interacting at a higher-level with in-

ferred shapes. We presented effective heuristic approaches

for disambiguating gestures, text and geometric drawing

elements and for snapping lines to the diagram using a

simple, effective dynamic snapping threshold. We also

designed a variety of complementary techniques for mani-

pulating diagrams at the vertex, line and shape level. Pre-

liminary testing indicates this is a promising direction and

can serve as a baseline for evaluating the need for and

progress in deferred beautification.

ACKNOWLEDGMENTS

A Special thanks to Sashi Raghupathy, Andries van Dam

and the Microsoft Center for Research on Pen-Centric

Computing at Brown University.

REFERENCES

[1]. Arvo, J and Novins, K. Fluid Sketching of Directed

Graphs. 2006, In Proc. 7th Australasian UI Conference.

[2]. Bragdon, A. GestureBar: A Training-Free Approach

to Disclosing and Teaching Gestures. Brown University,

2008. Tech. Rep. CS-08-06.

[3]. Calhoun, C., Stahovich, T., Kurtoglu, T., and Kara, L.

Recognizing Multi-Stroke Symbols. 2002, In AAAI Spring

Symposium on Sketch Understanding, pp. 15-23.

[4]. Davis, R. Magic Paper: Sketch-Understanding Re-

search. 9, 2007, Computer, Vol. 40.

[5]. Gross, M. and Do, E. Ambiguous Intentions. 1996, In

Proceedings of UIST'96, pp. 183-192.

[6]. Guimbretière, F., Stone, M., and Winograd, T. Fluid

interaction with high-resolution wall-size displays. 2001, In

Proceedings of UIST '01, pp. 21-30.

[7]. Hinckley, K., Baudisch, P., Ramos, G., and Guim-

bretiere, F. Design and Analysis of Delimiters for

Selection-Action Pen Gesture Phrases in Scriboli. 2005, In

Proceedings of CHI'05.

[8]. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka,

H. Interactive Beautification: A Technique for Rapid

Geometric Design. 1997, In Proc. of UIST'97.

[9]. Ku, D., Qin, S.F., and Wright, D. Interpretation of

Overtracing Freehand Sketching for Geometric Shapes.

2006, In Proceedings of WSCG‟2006.

[10]. Kurtenbach, G. and Moran, T. Contextual Animation

of Gestural Commands. 1994, Graphics Interface '94.

[11]. Landay, J. and Myers, B. Interactive Sketching for the

Early Stages of User Interface Design. 1995, In

Proceedings of CHI '95, pp. 43-50.

[12]. Lank, E. A Retargetable Framework for Interactive

Diagram Recognition. 2003, In Proceedings of ICDAR'03.

[13]. Ohki, Y. and Yamaguchi, Y. 2D Drawing System with

Seamless Mode Transition. 2005, In Proceedings of Smart

Graphics, pp. 206-217.

[14]. Patel, R., Plimmer, B., Grundy, J., and Ihaka, R. Ink

Features for Diagram Recognition. 2007, In Proceedings of

SBIM‟07, pp. 131-138.

[15]. Paulson, B. and Hammond, T. PaleoSketch: Accurate

Primitive Sketch Recognition and Beautification. 2008, In

Proceedings of Intelligent User Interfaces '08.

[16]. Pavlidis, T. and Van Wyk, C. An Automatic Beautifier

for Drawings and Illustrations. 1985, Proceedings of

SIGGRAPH'85, pp. 225-234.

[17]. Plimmer, B. and Grundy, J. Beautifying Sketching-

Based Design Tool Content: Issues and Experiences. 2005,

In Proceedings of the 6th Australasian Conference on User

Interface, pp. 31-38.

[18]. Raisamo, R. An Alternative Way of Drawing. 1999, In

Proceedings of CHI '99, pp. 175-182.

[19]. Ramos, G. and Balakrishnan, R. Zliding: Fluid Zoom-

ing and Sliding for High Precision Parameter Manip-

ulation. 2005, In Proceedings of UIST '05.

[20]. Saund, E., Fleet, D., Larner, D., and Mahoney, J. Per-

ceptually-supported image editing of text and graphics.

ACM Trans. Graph. 23, 3 (Aug. 2004), pp. 728-728.

[21]. Ye, M., Viola, P., Raghupathy, S., Sutanto, H., and

Li, C. Learning to Group Text Lines and Regions in

Freeform Handwritten Notes. 2005, In Proc. of ICDAR'05.

[22]. Yu, B. and Cai, S. A Domain-Independent System for

Sketch Recognition. 2003, In Proc. of the 1st International

Conference on Computer Graphics and Interactive Tech-

niques in Australasia and South East Asia, ACM Press.

[23]. Zeleznik, R., Miller, T., and Li, C. Designing UI

Techniques for Handwritten Mathematics. 2007, In

Proceedings of SBIM‟07, pp. 91-98.

[24]. Zeleznik, R. and Miller, T. Fluid Inking: Augmenting

the Medium of Free-Form Inking with Gestures. 2006, In

Proceedings of Graphics Interface „06.

170

	ABSTRACT
	INTRODUCTION
	PRIOR WORK
	System DESIGN
	iterative usability tests
	Making techniques and Gestures learnable:
	Gesture Design and Classification
	Text/Geometry Classification

	SNAPPING LINES
	EDITing with gestures AND WIdGETS
	Scribbling as a Drawing Technique
	Lightweight Selections
	Moving, Rotating, Scaling and Pressure Snapping
	Symmetry, Alignment and Distribution
	Working at Different Levels of Detail
	Formatting and Editing Text

	DISCUSSION/FUTURE WORK
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

