

Code Space: Touch + Air Gesture Hybrid Interactions for
Supporting Developer Meetings

Andrew Bragdon
1,2

, Rob DeLine
2
, Ken Hinckley

2
, Meredith Ringel Morris

2

1
Microsoft,

 2
Microsoft Research

Redmond, WA, 98052 USA

{anbrag, rdeline, kenh, merrie}@microsoft.com

ABSTRACT

We present Code Space, a system that contributes touch + air

gesture hybrid interactions to support co-located, small group

developer meetings by democratizing access, control, and

sharing of information across multiple personal devices and

public displays. Our system uses a combination of a shared

multi-touch screen, mobile touch devices, and Microsoft Ki-

nect sensors. We describe cross-device interactions, which use

a combination of in-air pointing for social disclosure of com-

mands, targeting and mode setting, combined with touch for

command execution and precise gestures. In a formative study,

professional developers were positive about the interaction

design, and most felt that pointing with hands or devices and

forming hand postures are socially acceptable. Users also felt

that the techniques adequately disclosed who was interacting

and that existing social protocols would help to dictate most

permissions, but also felt that our lightweight permission fea-

ture helped presenters manage incoming content.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces.

- Graphical user interfaces.

General terms: Human Factors

Keywords: Touch, depth camera, mobile devices, cross-

device interaction, development teams

INTRODUCTION

Development teams routinely hold co-located, small group

meetings to assign and prioritize work and to make deci-

sions [1] [2]. Unfortunately, the common use of laptops and

projectors coerces social interactions into a single presenter

style. To address this, we introduce Code Space, a system

to support these meetings by democratizing access, control,

and sharing of information across multiple personal devices

and public displays. Our meeting space, shown in Figure 1,

surrounds a shared, multi-touch wall display. The system

uses two Kinects to sense in-air gestures and user locations

and movements. One is directed toward people at the

shared display, the presenters; the other is directed at the

other attendees, the audience, and their personal devices.

To support cross-device interactions in such a space, we

explore touch + air gesture hybrid interactions that combine

in-air pointing/gesturing and postures, physical proximity,

direct-touch input, and motion sensing input. We believe that

simple, fluid cross-device interactions have the potential to

address many of the democratic access and sharing problems

developers face today. Our priority is to make these interac-

tions socially acceptable in a business context, something we

believe contemporary air gestures alone do not achieve.

Fig. 1. Code Space meetings include shared multi-touch
displays, depth cameras, mobile devices and cross-device
interaction

The following scenarios illustrate the utility of touch + air

gesture hybrid interactions. As a first example, an audience

member can remotely interact with the shared display by

pointing at it with his touch-enabled phone, like a remote.

Using a depth camera, we compute a trajectory to display a

cursor on the shared display. The user can move items on the

display by touching down on the phone‟s touch screen to

drag and releasing contact to drop. Our permanent sharing

technique combines in air pointing for mode and operand

input, with a touch gesture on a separate device, e.g. a smart

phone, to confirm and complete the sharing action. This in-

teraction becomes collaborative when the presenter accepts

the transfer by touching the object on the shared display. Our

transient display sharing technique combines in-air pointing

toward a target shared display with device orientation to in-

dicate sharing mode while the device is held up.

Such touch + air gesture interactions we believe represents

a novel design space for lightweight, socially acceptable,

proxemic [3] interactions within a society of heterogeneous

devices and displays [4].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ITS 2011, November 13-16, Kobe, Japan.

Copyright 2011 ACM 978-1-4503-0871-7/11/11....$10.00.

The contributions of this paper are:

- The design of a system to support co-located, small group

meetings of development teams that leverages touch + air ges-

ture interactions with the objective of making common tasks

more democratically accessible and reducing sharing costs

- The design of a set of novel and robust cross-device inter-

action techniques, which include air gestures with the goal

of being socially acceptable for business use

- An initial pilot evaluation of the system with 9 profes-

sional developers that reports on initial qualitative data on

perceived usability and social acceptability

RELATED WORK

Proxemic Interaction

Ballendat et al. [3] explored proxemic interactions, in which

the spatial relationships between users, their devices and a wall

display affect what is shown on the wall display. By bringing a

media player closer to the display, more media files from that

device are shown on the display. The user can also point at the

display using tracked physical items, which the system re-

sponds to differently than if the user points with their hand.

Vogel at al. [5] explored public ambient displays in which the

user‟s distance to the display affected what was shown and

what interactions were available; when within 40” of the dis-

play, the user may perform flick gestures in the air which take

into account hand orientation to browse and make selections,

and when at the display they can use direct touch to make se-

lections. After a pilot survey (see below) indicated users would

not feel comfortable performing air path gestures in a business

meeting, we decided similar techniques would not be a good

fit for our scenario. We extend these designs by using hand

posture to control touch gesture mode while at the display.

Intelligent Rooms and Ubiquitous Computing

Various intelligent room projects have investigated ubiqui-

tous computing environments that incorporate multiple users,

devices and displays, such as [6] [7] [8] [41] [42] and [9].

Many use WIMP-based interactions to transfer data, rather

than using air and touch gestures together to transfer content

between devices, for example. EasyLiving tracked a user‟s

computing session and as they walked around the space,

opened the live session on a nearby display [10]. Rekimoto

[11] explored using a handheld device in conjunction with a

pen while working at a digital whiteboard - much like a paint-

er‟s physical palette: to switch modes and enter text; [12]

explored multiple computer user interfaces that included drag

and drop actions between devices. [39] explored networking

protocols used in conjunction with sensors to discover nearby

devices and their relative positions to the user‟s device.

Sharing with Direct Touch

A number of systems explored group collaboration involving

a whiteboard and data sharing. WeSpace [13] aided astro-

physicists in collaborating on group work by providing a

touch table, onto which multiple laptop screens could be

remotely shared. Users could overlay screens to identify dif-

ferences, and once aligned, could also be shown on a high-

resolution passive wall display. We extend this work by ex-

ploring methods for sharing content fragments via cross-

device interactions. Systems have also explored using hand

held displays to hold private information that is not shown on

a public display, and remote control shared displays [14].

LightSpace [15] allowed users to transfer content between

two adjacent surfaces by touching one and then the other.

LightSpace also used the body as a display by projecting a

dot on the user‟s hand to represent a carried object. We ex-

tend these techniques to allow users to interact from a dis-

tance and delimit air interactions with touch. Dynamo [16]

enabled collaboration using explicit controls for sharing and

privacy. [17] explored using PDAs and command buttons to

transfer content. For very large wall displays, a user‟s phone,

tablet and laptop may not have enough screen area to provide

a natural transfer experience using drag/drop via proxy ap-

proaches. Virtual Shelves [18] explored combining touch

and orientation sensors on a phone to access virtual spatial

locations around a user. Chucking [40] combines touch with

accelerometer input on a phone to allow a user to physically

“toss” an object to discrete locations on another display.

Multimodal Manipulation

“Put-that-there” [19] combined arm tracking with speech

recognition, allowing multi-modal interactions in a virtual

environment. We feel speech would disrupt the natural con-

versation of meetings, so we opted not to use it. [20] pro-

vides a quantitative study of multi-modal interfaces using

pen and speech and also provides a more detailed set of re-

lated work in this area. As Hands-On Math [21] explored

concurrent touch and pen on one device, we explore combin-

ing touch + air gestures to form novel, hybrid interactions.

Remote Pointing and Manipulation

The Nintendo Wii [22] provides the user with a handheld

controller that is partially tracked via accelerometers and an

embedded infrared camera. The limitation of this approach

is that it requires specialized controllers, which do not have

a local display and may get lost. We instead explore con-

troller-less air gestures combined with optional touch

screen devices that the user would normally carry.

Charade [23] explored air gestures for controlling slide

presentations; gestures were delimited by the user pointing at

the screen, e.g. motion left to right to advance slides; a data

glove allowed the system to sense finger posture as well. For

a broader survey of design issues in spatial input, including 3-

D and virtual reality input, we refer to [24]. A number of

techniques have been developed for selecting remote tar-

gets on large displays. For example, Gesture Select [25]

overlays dynamically assigned gestures on targets. When

the user flicks in their direction with a pen, he can select

the remote targets by continuing the initial mark with that

gesture. As this is not the focus of the present work we re-

fer to [25] for a more complete summary of techniques in

this area. Our tertiary display transfer technique differs

from these in that it combines air pointing and touch input.

Software Design Sketching

A number of systems have explored collaboration and

touch input for software engineering. Calico [26] let users

sketch software models early in the design process with a

pen. CodePad [27] explored using a Tablet PC as an auxil-

iary display for a desktop coding environment.

Close-Proximity Sharing

A number of techniques have explored using physical touch

to transfer objects. For example, Pick-and-drop [28] ex-

plored using a pen stylus to transfer content between devic-

es by tapping on each, [43] explored a similar technique

with touch. BlueTable [29] allowed a user to place a de-

vice, such as a smart phone on a table, and identify it via a

vision and networking handshake, to show content such as

photos from the device around the phone.

Our gestures are not fully self-disclosing. An online learn-

ing system, such as GestureBar [30], might be used to dis-

close the available gestures in the system.

DESIGN OVERVIEW

Requirements and Needs of Developer Meetings

Software developers routinely hold meetings in which they

work together to sort, filter, edit, and categorize collections of

digital objects. Examples include Scrum meetings, in which

Agile teams rank and assign work items, and bug triage meet-

ings, in which teams assign priority and severity to bugs. The

formal structure of these meetings is often punctuated by mo-

ments of open-ended discussion and whiteboarding. Today,

these meetings are typically held in a conference room with a

projector that connects to a single device. This prevents demo-

cratic access to digital objects and forces one attendee to act as

the group secretary, which can lead to awkward moments of

remote control (“Can you open that one? No, up one more.”).

Although attendees often bring their own devices containing

relevant digital objects, they seldom switch the projected de-

vice or move objects between devices as the operations are

prohibitively expensive. Switching devices or information

spaces typically interrupts meeting flow, distracting from the

subject matter, a switching overhead problem. Indeed, as a

coping strategy to keep meetings democratic and low-

overhead, many Agile teams prefer to use pin boards with note

cards containing hand-written copies of digital information.

Although Code Space focuses on development teams, many

of their meeting problems may occur generally with infor-

mation workers. We focus on developers to allow us to ex-

ploit the well-defined structure of their team artifacts, the

frequency and formal nature of their meetings, and their high

level of experience with technology. While many meetings

today may include remote participants, our focus in this work

is on improving the experience of collocated users, as a

complement to the many techniques from CSCW that sup-

port remote participants.

Design Goals

Our primary design goal is fluid, democratic sharing of

content on a common display. To shape this design we

identify six design principles, summarized in Table 1. In

the evaluation, we seek to gain initial qualitative data to

explore these principles in the context of a working system,

gain feedback on the design of the system itself.

Skeletal tracking-based interfaces to date have generally

either used skeletal tracking alone or in combination with

voice. While these interaction styles have been successful in

games and virtual reality, they have 3 properties which make

them inherently problematic for business meetings: extensive

use of arm/hand waving which may not be socially accepta-

ble; imperfect recognition rates; and a lack of self-disclosure

of the available interactions. We believe that this is a signifi-

cant barrier, which must be solved for any system in this

space intended for business use. Indeed, [31] found that ges-

tures that required participants to perform large or noticeable

actions were the most commonly disliked, and also highly

unusual gestures, uncomfortable gestures, and gestures that

could interfere with communication were also problematic.

To investigate social acceptability, we conducted a prelimi-

nary, open-response survey of 42 professional developers at

a large software company in North America (mean age 36.5,

S.D. 8.39, 3 female); 88% own a smart phone, 21% own a

tablet and 62% of participants own a body tracking system

(e.g. Xbox 360 Kinect). 98% reported they would feel com-

fortable using a touch display in a meeting, 93% reported

comfort with interacting by pointing at the display from the

audience, 80% felt comfortable with the prospect of perform-

ing small hand motions such as holding up a palm, making

“a peace sign,” etc. Notably only 29% felt comfortable mak-

ing larger body motions, such as sweeping an arm across

their body; respondents described this as potentially “embar-

rassing,” hitting their “comfort limit,” “distracting” and “sil-

ly.” This initial survey supports our hypothesis that users are

willing to use air interaction in meetings, but not if it in-

volves substantial or extended motion.

Indeed, 95% of respondents said they would feel comfortable

using a tablet or touch laptop to interact with the shared dis-

play; 80% said they would feel comfortable using a smart

phone to interact with the shared display; of the 20% that did

not, 2 participants mentioned concerns regarding battery life,

2 said they would consider it but it would depend on the spe-

cific UI used, while the remaining participants were con-

cerned about the comparatively small screen size.

In a multi-user environment with interaction from a distance,

we feel it is important to make manifest who is performing

an action. For instance, it could be jarring if objects begin

moving on the shared screen without knowing who is mov-

ing them. Using touch-enabled devices for remote manipula-

tion of the shared display is both direct and precise. Howev-

er, the personal nature of such interactions obscures the ac-

tor, which in turn interferes with users‟ normal social skills

for managing contention for a shared display. We believe the

Design Principles

Principle 1 Everyone can interact with the shared display, from anywhere in
the meeting space, with any device they bring.

Principle 2 Interactions should be socially acceptable and should not cause
embarrassment or distraction.

Principle 3 Each modality should have a separable use.

Principle 4 Interactions should seamlessly span modalities and devices,
forming cross-device gestures.

Principle 5 Interactions should be manifest to participants to create aware-
ness of actions.

Principle 6 Cross-device interactions should use simple grammars to reduce
the potential for error and learning hurdles.

Table 1. Our design principles for Code Space.

key to fixing this problem is to use multi-touch and air point-

ing and postures together in hybrid interactions, to leverage

the strengths of each. Specifically, we use skeletal tracking to

specify modes and operands, using simple, familiar motions,

like pointing; we confirm and complete actions using touch

input, where the interaction is more socially acceptable and

precise. In the meeting context, we rejected the use of speech

because of the potential for distraction and ambiguity.

Fig. 2. Our Code Bubbles [32] implemented in Visual Studio.

DESIGN

Using the Code Bubbles Metaphor

For our information space, we implemented Code Bubbles

[32], a canvas (Fig. 2) that displays task-specific subsets of a

software project, in particular, individual code methods, bug

reports, sticky notes, and diagrams, each in their own “bub-

ble.” This approach was found to scale to show 11-17 meth-

ods side-by-side unclipped at 1920x1200 (our resolution) in

a typical case analysis [32]. We added basic touch control so

that the user can move bubbles by touch-dragging, resize

bubbles through pinching, and pan the canvas by touch-

dragging the background. Although our display does not

natively recognize pen input, we provide a mode in which

touch (with a finger or passive stylus) creates ink. Our im-

plementation is an extension of Visual Studio, which gives

the user full editing and debugging capabilities through the

Code Bubbles interface. Code Bubbles runs on both the

shared display and standard computers, such as a touch lap-

top (see below). On the mobile phone, we created an app for

use in Code Space that supports the interactions below and

allows a small number of objects to be viewed and edited.

Interacting from a Distance

To support our goal of democratized input, we allow users in

the audience to interact with the shared display using what-

ever they brought with them, from nothing (just their hands

and arms), to a touch smart phone, to a touch-enabled laptop.

Pointing with the arm

When an audience member points at the display, skeletal

tracking identifies the gesture and displays a cursor on the

shared display. Because of the low resolution of the Kinect

hardware, we calibrate the center point of the display to be

aligned in absolute coordinates, however, outward from

this point a gain factor of less than one is applied to create

greater precision. In a production system, with greater reso-

lution, absolute pointing could potentially be used. Skele-

ton tracking segments the hand, which is then tracked by

averaging the depth map in a radius surrounding this point.

Fig. 3. Pointing + manipulating with hand postures and
skeletal tracking.

Manipulating with the arm

Users can manipulate objects by forming a flat palm posture

with their hand (Fig. 3), with the fingers bunched and the

palm facing the shared display. This switches the system into

drag mode, indicated by a cursor change, until the user ends

the posture. We experimented with this as a deviation from

our principle of touch-delimited interaction so that users

could try both alternatives and comment on the difference.

Pointing and manipulating with the arm + phone

As an alternative for remote manipulation, a user can point

at the shared display with a touch-enabled smart phone

(Fig. 4). Based on skeletal tracking, a cursor appears on the

shared display. To drag an object, a user points at it, touch-

es anywhere on an unused portion of the phone to begin

dragging and releases the touch to stop. This technique

combines the two devices/modalities through wireless net-

working to create a cross-device interaction. If the phone is

not raised up, or the user does not press the icon, no action

will occur. Depth images of a user‟s palm and a user hold-

ing a phone (see below) are similar, so our prototype dis-

ambiguated via phone lock state, accelerometer activity

greater than a threshold, phone touch contact, and user

pointing; detailed signal processing could be used to dis-

ambiguate multiple phones, and to provide more robust

recognition.

Fig. 4. Pointing and manipulating with a touch-enabled
phone.

Annotating temporarily with the arm + phone

To augment pointing, a user adds temporary ink by pressing

and holding an ink icon on the phone. While the icon is

pressed, the user‟s arm movements can draw annotation

marks, such as lassos, underlines, etc. When the user releases

contact, the ink disappears. Our goal is to allow users to vis-

ually accentuate features onscreen; we expect tracking preci-

sion is too low to write valuable annotations. For permanent

annotations, the user can ink directly on the shared display.

Gesturing from the audience with pointing + touch

Air gestures have several inherent problems: (1) accidental

activation: since systems capture all user motion, every ges-

ture may be interpreted by the system whether or not it was

intended [23], (2) segmentation ambiguity: gestures are by

nature continuous, making them difficult to segment [23], and

(3) tactile response: purely air gestures do not provide tactile

response; while pressing a finger and thumb together does

provide tactile response, this may be done inadvertently. Giv-

en these challenges, and the social acceptability issues dis-

cussed above, we sought a design to address these problems.

Fig. 5. User points phone at shared display, extending their
arm, thus entering gesture mode, then dwells showing ges-
ture disclosure overlay (left), performs flick right gesture
(center), screen animated pans to the right (right).

Users may gesture from the audience to execute commands

via cross-device interaction (see Fig. 5). However, rather than

using air gestures for command input, we use skeletal tracking

to set (1) touch gesture mode on the user‟s device (phone or

touch laptop), which is indicated by a visual overlay that also

discloses available gestures after a dwell period, and two spa-

tial operands: (2) which remote shared display to control, and

(3) a spatial location on that remote display (optional, but

available to the command). Note that air gestures do not actu-

ally execute commands, removing the possibility for acci-

dental activation. Instead, once gesture mode is set using skel-

etal tracking the user executes actions by performing touch

gestures on their device. We considered using touch-based

icons on the phone, however when held at arm‟s length these

may be harder to see, require looking, and may be accidentally

pressed. Given that gesture disclosure is shown if the user

dwells, we feel the system affords sufficient approachability.

We provide a set of rectilinear mark-based gestures [37],

which perform a variety of commands, including controlling

the debugger (e.g. start, step into, step over, step out, etc.).

SHARING OBJECTS

We provide several interactions to allow objects to be per-

manently transferred between the shared screen and mobile

device and one for sharing objects temporarily.

Object transfer with pointing + touch gestures

Users can push/pull objects to/from their phones using

cross-device gestures. Because smart phones are small and

light enough to hold in one hand, the user may perform the

transfer either unimanually or bimanually (analogous to the

touch laptop, see below). With the unimanual approach,

users points the phone at the shared display to specify an

object of interest and then flick down with the thumb on the

phone‟s touch screen to pull that object onto the phone.

After the transfer, a scaled-down version of the object ap-

pears on the phone. The user may pinch to resize and single-

touch to reposition this proxy. A context menu also appears,

offering various operations that can be performed, such as

edit (in the case of a bug bubble, for example, the user may

edit its priority, status, etc.), delete, save, etc. Once the object

has been copied to the phone and the context menu is open,

the user no longer needs to point the phone at the display, but

can interact with the local object at her leisure. The user can

then push objects back to the large display by pointing the

phone at a location they would like to send it to, and then

flicking up on the touch screen with their thumb (see Fig. 6).

Fig. 6. Audience member pushes content to a shared dis-
play using cross-device interaction with touch and air point-
ing, appears as package (see below).

To push objects from the touch laptop (Fig. 7) or tablet to the

display, the user points at the location on the display where

they want the object to appear. This causes the tablet/laptop to

enter gesture mode, which is indicated with a semi-transparent

color overlay, text and gesture disclosure icons. While in this

mode, the user flicks up (toward the display) with their other

hand on each of the objects to send. To pull objects from the

display to the tablet/laptop, the user points at an object on the

shared display, and then uses the other hand to flick down on

the tablet at the location where they would like to place it.

Fig. 7. Pulling content from shared display to a touch laptop.

We considered an order-driven grammar (without speech

input), similar to “Put That There” [19], in which the order

of the objects determines the direction of the transfer.

However, in initial pilot Wizard-of-Oz testing with 4 users,

3 users said they felt they were likely to make a mistake

and accidentally perform the action in the wrong order.

This lead us to the directional gesture which unambiguous-

ly controls the direction of the transfer.

Fig. 8. User previews a package and then opens it.

Light-weight permission to share

In initial pilot testing, users felt that, in general, social protocol

would dictate permissions for when it is acceptable to place

objects in the presenter‟s display. However, participants men-

tioned scenarios where this might be “too open,” e.g., in larger

meetings or meetings in which participants have just met. To

Fig. 10. Two pre-
senters.

help encourage sharing in these environments, we added

the package metaphor (Fig. 8). When the package metaphor

is enabled, the user transfers an object to the display, a

package icon appears as a surrogate for the object. If the

user sends several items in sequence, they are grouped into

a single package. The presenter hovers over the package to

reveal its contents. If and when the presenter wants to show

the transferred objects, she taps on the package to open it,

which effectively makes transfer a cooperative gesture [33].

Transient Sharing with pointing + accelerometers

In other scenarios, users may want to briefly show an object,

the equivalent of holding up a piece of paper to the group.

For instance, in development meetings, it is common for a

question or problem to arise, at which point one user will use

a laptop to work asynchronously to find an answer. Sharing

the answer allows discussion to continue on that topic.

To transiently share from a phone, the user points the phone

at the display at arm‟s length, and holds it perpendicular to

the floor (Fig. 9), much like holding a piece of paper out to

the group. While the phone is held in this position, the con-

tents of the phone‟s screen are shown on a temporary overlay

on the shared display. When the user puts the phone down,

the overlay is dismissed. A presenter, however, can decide to

make the phone contents a permanent part of the display by

dragging the overlay, which snaps the content into a bubble

that begins dragging with the presenter‟s contact.

Fig. 9. User working with a
mobile phone normally
(left). User holds phone at
arm’s length and orients
the phone vertically, much
like holding a piece of pa-
per up to the group. While
this is maintained, the
phone’s contents is shared
transiently with the group.

Users can also transiently share the contents of a tablet or

touch laptop. However, since this form factor is heavier, we

do not expect users to hold them up. Instead, users hold

their arm out at the display, with the palm flat, perpendicu-

lar to the floor, and simultaneously touch the display.

While this action is maintained, the content remains shared.

As with the phone scenario, the presenter can drag content

out of the overlay onto the display to keep it permanently.

Peer to Peer Transfer

Users can use similar gestures for peer-to-peer transfer of

objects. On a laptop or tablet, the user points to her peer

with one hand and flicks with the other hand to send an

object. On the mobile phone, the gesture may be unimanual

or bimanual. In the peer-to-peer scenario, pushing an object

to a peer (flick up) is allowed, but pulling an object (flick

down) is not, for privacy reasons. We hypothesize users

may feel differently about pointing fingers and devices at

their peers during meetings; we explore this point in a pilot

study (see below). If users are seated next to one another,

pointing is infeasible. Instead, established techniques de-

signed for very short range sharing, such as Bump [34],

Stitching [35], and Pick-and-drop [28] could be used. The

package metaphor (see above) completes transfers.

Presenter sharing from display to audience

The presenter can also transfer objects to the audience, either

to a specific user or to the whole group. To send to a single

person, the presenter points at her, at which point a screen

overlay (disclosing the available gestures as before) is shown

around the presenter indicating they may swipe up on the dis-

play to send an object. As above, we wanted to determine user

comfort levels with pointing at someone, so we explore this in

the pilot evaluation (see below). To send to everyone in the

audience, the presenter may point in the direction of the audi-

ence, but at the ground. The same overlay appears to indicate

the mode, but includes visuals to indicate that this will broad-

cast to the group. Since we anticipate presenters may often

turn to face the audience and gesture with their hands, we only

show the mode overlay if the presenter‟s other hand is near the

display. This design does require the presenter to turn their

head during the interaction due to field of vision limits, how-

ever we expect that the interaction‟s brevity and its consisten-

cy with other transfer actions largely balances this tradeoff.

ENRICHING THE DISPLAY WITH SKELETAL TRACKING

In addition to using skeletal tracking to allow cross-device

interaction, we also use it to enhance the experience of us-

ing the shared display.

Sensing Social Context

Using depth cameras and skeletal tracking, the system is

aware of how many users are at the board and in the audi-

ence. We use this data to detect social context to make cer-

tain interactions easier and to eliminate some usability prob-

lems. We sought to keep the system as simple as possible,

and therefore as robust/predictable as possible – ideally only

identifying unambiguous context. We provide 5 modes based

on how many presenters and audience members are present:

Ambient Display Mode: no presenters, no audience. This

mode clears after a timed delay of two minutes when a user

enters the space or if a user interacts with the shared dis-

play. The ambient display shows bug counts for team

members, and a calendar of team meetings. Users walking

by can transfer calendar items onto their phone.

Single Speaking Presenter: one presenter facing the audi-

ence and away from the display. We hide UI elements sup-

porting presenter, such as posture palettes, semi-transparent

panning bar, etc. since the presenter is not looking at them

and they obscure the audience‟s view of the content.

Single Working Presenter: one presenter facing the display

enough to see it. Supporting present-

er UI is shown.

Two or More Working Presenters:

Because we allow users to pan and

zoom the display, this creates the po-

tential for contention issues when two

or more presenters work concurrent-

ly. To solve this problem, we auto-

matically split the display in place

when multiple users are present,

each user accessing a separate, pannable view of the same

underlying content (Fig. 10).

Audience Only (Working Meeting): In this scenario, the

package metaphor will break down since no one is at the

display to open it. Thus, packages automatica lly open in

this mode.

Fig. 11.

Sending con-
tent to a ter-
tiary display
with touch and
air pointing.

Tertiary Display

Wall displays inherently offer a height zone that is comforta-

ble to reach for adult users of average height. Touching tar-

gets outside this range may be uncomfortable. To experiment

with expanding the size of the display above the zone which

is comfortable to reach, we added a passive, front-projected

tertiary display occupying a zone from 2 to 2.5 meters above

the floor, situated immediately above the touch display.

While users cannot naturally reach this space through direct

touch, we allow users to reach it remotely using touch-

delimited air pointing. The tertiary display acts like a sliding

chalk board. Users can send content to it by pointing at it and

then performing a swipe up on the shared display; performing

a swipe down reverses the direction of the transfer (Fig. 11).

Adding Content with Posture Palettes

Toolbars can be ineffective on large displays as they may re-

quire users to walk to reach distant commands [25]. We initial-

ly considered techniques which involve contact with the dis-

play, such as touching on the background with one finger, to

open a context menu. However, in a whiteboard environment,

the display may become filled with content so as to make this

difficult. We also considered using, for example, multiple fin-

gers (three, since 1-finger and 2-finger interaction is already

used), or perhaps a palm print similar to [21], however this

incurs several issues: (1) palm rejection, as the posture is as-

sumed, stray contacts may cause inadvertent direct manipula-

tion such as movement/resizing of underlying objects, and (2)

increased friction, if the user needs to drag the palette, sliding

three fingers or a palm across the display incurs a greater force

of friction on the user‟s hand; in pilot testing 1 user described

this, “I've always disliked touch screens made of [materials

like this] because your fingers stick [when dragging].”

We developed Posture Palettes, which utilizes hand pos-

tures in the hover state to address these issues. The user can

open a tool palette of available content to add to the work-

space, in situ at any time by forming an open palm with

spread fingers (see Fig. 12) in their non-dominant hand.

While this posture is maintained, the tool palette will remain

open and continue to track the (projected) position of the

user‟s hand. Inspired by ToolGlass [36], this allows the user

to reposition the tool palette as needed without touching the

display, bringing it closer to the dominant hand when need-

ed, at which point the dominant hand can drag an item out to

place on the display. The user moves the palette away when

unneeded or changes her hand posture to dismiss the palette

completely. This follows our design principle that touch per-

forms an action, whereas posture changes modes, thereby

associating the intentionality with an explicit and well-

defined touch. We also offer unimanual operation; the user

forms the open palm posture and then taps on the screen with

any finger of that hand to pin the palette in place. The user

can then use the same hand to drag out content as needed.

Fig. 12.

User forms the open-palm +
spread fingers posture while in
the hover state, opening the pos-
ture palette to the right of their
palm (top).

User drags the note icon out of
the palette with their other hand
to create a note bubble (middle).

User stops forming the posture,
dismissing the posture palette
(bottom)

Posture-Moded Touch and Pen Gestures

We also explored using hand postures while hovering over

the display to control an explicit gesture mode. A well-

known problem for touch/pen-based gestures is how to de-

termine when the user is in gesture mode; Li et al. found that

the most efficient method of 5 tested for moding pen-based

gestures was to press a button with the non-dominant hand.

Inspired by this, but faced with the reality that the user might

be far from such a button on a large display, we opted to use

non-dominant hand posture to control gesture mode.

We use the same palm-flat, fingers-spread posture (see Fig.

13) for gestures as for the palette, which means that users

only need to learn a single posture. While this posture is

held, the area immediately surrounding the presenter (that is

not used for the visual feedback of the menu) changes color

to indicate that gesture mode is active, and mode feedback

appears underneath and tracks the user‟s hand. The user then

performs a touch or pen gesture with her dominant hand. The

user only needs to hold the posture long enough for the dom-

inant hand to initiate contact-down, at which point the sys-

tem will lock into gesture mode until contact-up from the

dominant hand, even if the user stops holding the posture

with the dominant hand. This technique need not be bi-

manual, the user can initiate gesture mode in the hover state,

and then simply contact one finger of the same hand with the

display to begin executing a gesture. Note that while the

same posture is used to invoke pallettes and gestures, it is

contact by the dominant hand on an area of the screen that is

not the pallettes (most of the screen area) that distinguishes

between making a posture selection or a gesture invocation.

To disclose the set of available gestures, we use a marking

menu [37], which appears if the user dwells at the beginning

of the gesture. Expert users can immediately start executing

the gesture, and the menu will not appear. The gesture set is

shared with the remote audience gesture set (see above).

Fig. 13. Users hands in the
inactive state (top). User
forms open-palm gesture with
left hand, entering gesture
mode, indicated by a semi-
transparent screen overlay
and red shadow behind user's
posture hand (middle). User
touches down on the back-
ground to gesture; by pressing
and holding, marking menu
disclosure opens to guide the
user through the available
gestures (bottom). Posture
pallettes are hidden when the
user performs a gesture.

Workflow Templates

Many development meetings have a formal structure that

amounts to categorizing a set of digital objects. Examples

include assigning priorities to bugs, partitioning work among

developers, and ranking a set of features to implement. To

support this activity, we added light-weight workflow tem-

plates, which are based on the concept of buckets. Users can

drag bubbles into buckets, at which point automatic layout

assistance will resize and lay out the bubbles in the bucket to

fit. Each workflow template provides the user with different

visual arrangements of buckets, such as grids, Venn dia-

grams, sequence diagrams, etc. (see Fig. 14, 15).

Fig. 14. User drags a new bubble into a workflow template
bucket.

Fig. 15. Workflow template layouts.

Users can also move bubbles between buckets or drag them

back onto the main workspace at which point they snap back

to normal size. Users can also zoom in on a specific bucket

to examine its contents in isolation. Since each template is

not tied to a specific task, users can appropriate them as

needed. We expect that they can provide value to users for

tasks which involve sorting, categorization, or comparison.

TECHNICAL IMPLEMENTATION

Hardware

We set up Code Space in a lounge in a building of a large

North American software company. Our shared display is a

PanelWorx 42” 1920x1200 screen with two-touch infrared-

based input. Our depth cameras are Kinects, suspended

from the ceiling. For our user study we provided two mo-

bile devices: a Samsung SGH-i917 running Window Phone

7; and a touch and pen-enabled HP EliteBook 2740p tablet

PC, running Windows 7.

Cross-Device Interaction Recognition

Primary skeleton tracking is accomplished using an Xbox

360 hardware development kit connected to a Kinect sensor.

Hand posture recognition is identified using simple heuristic

approaches that compute the average number of radial gaps

(between fingers) on a hand. Other more robust approaches

should be considered in a production system. Data from mul-

tiple remote devices, such as Xbox 360 development kits,

touch laptops, smart phones, etc. is sent via network to a

machine connected to the shared display and tertiary display,

where recognition of cross-device interactions is performed.

Technical Challenges

Stable project transfer Sharing development project files stably

would ideally require transferring not just the necessary files, but also the rest
of the project and its dependencies so that the recipient could perform navi-
gations as needed (e.g. Go to Definition, Find All References, etc.). A possi-
ble solution could be to check in a new branch/shelveset in the repository for
the current share; the recipient would then automatically check out this
shared branch to complete the transfer.

User identification/tracking We currently use the Kinect SDK to

perform facial recognition for users in the audience; however this is currently
imperfect in that users must face the camera, and the system can lose track
of users under various ambiguous circumstances. We believe that additional
sensors coupled with improved recognition software could address this issue
in the future.

Device address discovery Our implementation “hard-codes” device

network addresses to identities; in a production system a robust mechanism
is needed to identify which devices are in the room and what their network
addresses are. Prior work has combined computer vision with BlueTooth
short range wireless [29], active optical emissions from the device which is
identified by cameras [38], etc.

Device identification/tracking (optional) This issue is optional,

but is worth discussing. We currently assume that when a specific user, say
Jane, points at the screen, that she is currently in possession of any devices
in the room to which she owns/is logged into. In an ecologically valid envi-
ronment, this may not be the case, e.g. Jane lends her laptop to Mark. To
address this issue, the system must identify which devices a user is actively
using, perhaps via scene analysis or cameras on the device.

Table 2. Technical challenges

Device Discovery, Tracking and Project Transfer

This paper is intended to explore the design and usability of

techniques for sharing, and potentially motivate further

technical development in the area of discovery, handshake

and data transfer. As such, our implementation does not

fully address the following issues, which we leave to future

work, and which we believe our pilot evaluation now helps

to motivate. We discuss possible known and novel ap-

proaches to each issue in Table 2 (see above).

PILOT EVALUATION FEEDBACK AND DISCUSSION

We recruited 9 full-time, professional developers (mean

age 39, S.D. 10.5, 1 female, 8 right-handed) from a large

software company in North America, who reported an av-

erage of 16 years of professional experience. All partici-

pants worked in development teams, with mean size 4.5,

with 5 developers using an Agile development approach.

We ran each participant singly in a simulated meeting room

with two experimenters, which provided a controlled, three-

person social environment, while avoiding group think that

might be seen with multiple participants. While we ran partic-

ipants singly, users still interacted in a multi-user environment.

The experimenters alternated asking questions and speaking

task prompts and short, pre-written feature descriptions. For

those tasks that required two users, such as opening a package

sent to the display or peer-to-peer transfer, the experimenter

acted as a second user. After brief instruction, participants

used each technique on a short representative activity, includ-

ing code review and bug triage. The second experimenter tran-

scribed the participants responses and periodically asked the

participant usability questions. Each participant completed a

demographic pre-questionnaire and a post-questionnaire to

provide ratings and comments on the techniques. Each session

lasted one hour; participants received a lunch voucher.

Overall

Overall, participants were quite positive about the system

(“this is awesome,” “cool”, “this is Minority Report stuff, I

love it”). Participants liked being able to share and interact

remotely from the audience (“everyone can participate”).

Participants saw value in being able to annotate, categorize

and share digital artifacts in a whiteboard environment.

Social Acceptability

In general, despite the novelty of the interaction techniques,

participants felt they were socially acceptable for meetings

and they would feel comfortable performing them with their

teams. We did not receive any concerns, even when prompt-

ed, with the exception of peer-to-peer transfer which we hy-

pothesized might be seen differently (see below). Partici-

pants mentioned that the interactions were not significantly

different from pointing which they already do, with one par-

ticipant saying “this is the same as drawing at the white-

board” when referring to posture palettes. Indeed, partici-

pants did not find any of the posture-based techniques to be

socially unacceptable. We attribute this to the fact that most

of the motion of the gestures was performed via touch, and

air gesturing was limited to setting modes/providing oper-

ands. As one user said about selecting commands on mobile

phones, “This… makes it easier for me to do more gestures. I

was thinking before [when using just air gestures] I'd have to

stick my finger in my ear to draw things.”

When it came to peer-to-peer sharing, 3 participants felt this

was not socially acceptable (“pointing at someone would be

rude”), especially among strangers. This discomfort was not

just about pointing: “I don't feel comfortable sending in front

of other people. They'll think it's secret or something.” While

other participants were neutral, the participants who did not

find it socially acceptable felt strongly about it and said he

would rather choose the recipient from a list of meeting at-

tendees. These participants also felt that disclosing the trans-

fer to the rest of the group was not necessary. This appears to

extends to the share with audience gestures as well, which

shares the design. Given that a substantial minority of partic-

ipants felt strongly about this point, we recommend that for a

production system peer to peer sharing be accomplished us-

ing an attendee list or other less obtrusive mechanism.

Social Disclosure and Permission

Users in general felt that in-air interactions disclosed who

was interacting and helps social protocols to enforce trans-

fer permissions (“it's a social gesture… otherwise, it‟s like

who put that there?”). However, there were several excep-

tions. When editing bugs on the phone, two users suggested

adding an edit icon appear on the shared display to disclose

the editing. One user felt that it was most important to dis-

close who was interacting when pushing content to the

shared display, or remotely manipulating items, but unnec-

essary when pulling content to the phone from the display.

In general, participants felt that existing social protocol

would dictate remote control permissions, “I think people

would be considerate,” however, 1 participant felt that they

would want “explicit permission.” Four users asked for the

ability to disable remote movement when needed, citing

examples such as large meetings.

Our only explicit support for permission is the package. All

but one participant, as presenters, were comfortable with

members of the audience sending content to the shared dis-

play or remotely pointing or manipulating. Indeed, they felt

that normal social protocol and politeness would govern

these activities. The participant who did not feel comforta-

ble was not completely opposed but said that he would pre-

fer to enable the features explicitly. Interestingly, partici-

pants wanted a permission feature for pushing new content

to the display, but not for manipulation of existing content.

Utility

When asked, most users either named remote pointing or

object sharing as the most valuable feature. All but 1 partic-

ipant saw value in remotely pointing and moving objects

using air interaction, while 1 participant felt that walking

up to the display would be easier than remotely moving

objects. It appears that the cost to walking incurred both the

time and effort needed to approach the board, as well as the

perceived social cost; two developers mentioned that some

“shy” colleagues might be more likely to talk while seated

than to stand up in front of the group. Users were evenly

split between preferring phone versus hand postures for

remote manipulation. Some felt the phone was more effort

to use and inconvenient in one‟s pocket, while others were

concerned that the hand posture had imperfect recognition.

When it came to sharing, participants were very positive,

(“now that‟s really good,” “Huh, wow. That is really super

cool.”) Participants commented that the cost of sharing was

significantly reduced and that it would enable sharing that

might be prohibitively difficult today, i.e. requiring a pro-

jector switch or creating notes/reminders to open an item

seen at the meeting later. Participants were very positive

about being able to pull down bugs and other detailed items

onto the phone to review locally. Participants had a number

of spontaneous ideas on how they might use sharing, for

example parceling out work items, transiently sharing in-

formation to support a specific point, or performing an in-

vestigation to answer a question that came up during the

meeting and sharing the result with the group. When pull-

ing content, participants felt that they would use the phone

primarily for reading, and would do all but the lightest edit-

ing tasks on a laptop. Two participants suggested that they

would also want a mouse drag-and-drop approach for lap-

tops to transfer via split screen as long as the shared display

was not too large or high resolution to be practical.

Usability

For sharing grammar, participants all appeared to find the

sharing gesture natural. Indeed, in addition to the positive

feedback described above, there were no requests to change,

for example, to an order-based approach. We also did not

observe any instances where users accidentally sent objects

in the wrong direction. We believe that the touch gestures to

push/pull helped to obviate the need for additional order con-

straints, and created a well-defined moment of when the

command was executed. Users also did not appear to have

difficulty remembering the gesture directions for push/pull.

Cross-device interaction appeared to feel natural to users,

indeed even though interactions often spanned several devic-

es, sensors or modalities (e.g. sharing to a phone), users ap-

peared to consider them as a single interaction. Indeed, sev-

eral users were surprised to learn that some interactions in-

volved multiple separate computers/devices. Two users not-

ed that relative pointing required additional time to acquire

targets and asked for absolute pointing. While this could be

more intuitive, it would be more susceptible to sensor noise,

which had been a determining factor for our setup.

Limitations

All participants were from a large company; our study sample

may not generalize to other populations. The controlled envi-

ronment used also may not be representative of a full meeting

environment with multiple users, and the controlled tasks used

may not be fully representative. Imperfections in the prototype

implementation, such as occasional recognition errors or im-

precision in pointing may have influenced user feedback.

We note that to make broad conclusions about the social

acceptability of the gestures tested, a quantitative study in an

ecologically valid, group environment would be needed.

However, we feel this initial qualitative pilot study is promis-

ing and motivates further quantitative study in this area.

CONCLUSION

We presented Code Space, a system that explores touch + air

gesture hybrid interactions for supporting co-located, small

group developer meetings by democratizing access, control,

and sharing of information across multiple personal devices

and public displays. We presented a set of cross-device inter-

actions, which use a combination of in-air gestures for social

disclosure of commands, targeting and mode setting, com-

bined with touch for command selection and precise gestures.

Our formative study of professional developers indicates the

interactions are useful to developers and socially acceptable.

REFERENCES
1 G. M. Olson, J. S. Olson, M. R. Carter, M. Storrosten. Small group design
meetings: an analysis of collaboration. In HCI „92.

2 Biehl, J.T., Czerwinski, M., Smith, G., and Robertson, G.G. FASTDash: a

visual dashboard for fostering awareness in software teams. In CHI‟06.

3 Ballendat, T., Marquardt, N., and Greenberg, S. Proxemic interaction:

designing for a proximity and orientation-aware environment. In ITS'10.

4 Fitzmaurice, G. W., Khan, A., Buxton, W., Kurtenbach, G., et al. Sentient

Data Access via a Diverse Society of Devices. ACM Queue, 8, 1 (Nov 2003).

5 Vogel, D. et al. Interactive public ambient displays: transitioning from
implicit to explicit, public to personal, interaction with multiple users. In UIST'04.

6 Streitz, N., Geißler, J., Holmer, T., et al. i-LAND: An Interactive Landscape

for Creativity and Innovation. In Proc. of ACM SIGCHI'99.

7 Johanson, B., et al. The Interactive Workspaces Project: Experiences with

Ubiquitous Computing Rooms. IEEE Pervasive Computing, 1, 2.
8 Rekimoto, J. and Saitoh, M. Augmented Surfaces: A Spatially Continuous

Work Space for Hybrid Computing Environments. In Proc. of CHI’99.

9 Brooks, R. and et al. The Intelligent Room Project. In Proc. of IC'97.

10 Krumm, J., Harris, S., Meyers, B., Brumitt, B., and et al. Multi-camera multi-

person tracking for EasyLiving. In Proc. of IEEE WVS, 3-10.

11 Rekimoto, J. A multiple device approach for supporting whiteboard-based

interactions. In Proc. of CHI'98, 344-351.

12 Rekimoto, J. Multiple-computer interfaces: "Beyond the desktop" direct
manipulation environments. In CHI'00 EA.

13 Wigdor, D., et al. WeSpace: the design development and deployment of a

walk-up and share multi-surface visual collaboration system. In CHI'09.

14 Myers, B. A. Using Multiple Devices Simultaneously for Display and

Control (Oct. 2000), 62-65.

15 Wilson, A. and Benko, H. Combining Multiple Depth Cameras and

Projectors for Interactions On, Above, and Between Surfaces. In UIST'10.

16 Izadi, S., et al. Dynamo: a public interactive surface supporting the
cooperative sharing and exchange of media. In Proc. of UIST'03, 159-168.

17 Greenberg, S., Boyle, M., and LaBerge, J. PDAs and Shared Public Displays:

Making Personal Information Public, and Public Information Personal. Personal

Technologies, 3, 1 (March 1999).

18 Li, F., Dearman, D., and Truong, K. Virtual shelves: interactions with

orientation aware devices. In Proc. of UIST'09, 125-128.

19 Bolt, R.A. “Put-that-there”: Voice and gesture at the graphics interface. In
Proc. of SIGGRAPH'80, 262-270.

20 Oviatt, S., DeAngeli, A., and Kuhn, K. Integration and synchronization of

input modes during multimodal human-computer interaction. In Referring

Phenomena in a Multimedia Context and their Computational Treatment ('97).

21 Zeleznik, R., Bragdon, A., et al. Hands-on math: a page-based multi-touch

and pen desktop for technical work and problem solving. In Proc. of UIST'10.

22 NINTENDO. Wii Game Console. 2006.

23 Baudel, T. and Beaudouin-Lafon, M. CHARADE: Remote Control of
Objects using Free-Hand Gestures. Communications of the ACM, 36, 7 (1993).

24 Hinckley, K., Pausch, R., Goble, J., and Kassell, N. A survey of design issues

in spatial input. In Proc. of UIST'94, 213-222.

25 Bragdon, A. and Ko, H. Gesture Select: Acquiring Remote Targets on Large

Displays without Pointing. In Proceedings of CHI'11.

26 Mangano, N., Baker, A., and van der Hoek, A. Calico: a prototype sketching

tool for modeling in early design. In Proc. of MiSE '08, 63-68.
27 Parnin, C., Görg, C., and Rugaber, S. CodePad: interactive spaces for

maintaining concentration in programming environments. In SOFTVIS '10.

28 Rekimoto, J. Pick-and-drop: a direct manipulation technique for multiple

computer environments. In Proc. of UIST'97, 31-39.

29 Wilson, A. and Sarin, R. BlueTable: Connecting Wireless Mobile Devices on

Interactive Surfaces Using Vision-Based Handshaking. In Proc. of GI'07.

30 Bragdon, A., Zeleznik, R., Williamson, B., et al. GestureBar: improving the

approachability of gesture-based interfaces. In Proc. of CHI'09, 2269-2278.
31 Rico, J. and Brewster, S. Usable gestures for mobile interfaces: evaluating

social acceptability. In Proc. of CHI'10, 887-896.

32 Bragdon, A., Zeleznik, R., et al. Code Bubbles: A Working Set-based

Interface for Code Understanding and Maintanence. In CHI'10, 2503-2512.

33 Morris, M. R., Huang, A., Paepcke, A., et al. Cooperative gestures: multi-

user gestural interactions for co-located groupware. In Proc. of CHI'06.

34 BUMP TECHNOLOGIES. Bump (iPhone App). 2011.

35 Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P., and Smith, M.
Stitching: pen gestures that span multiple displays. In Proc. of AVI'04, 23-31.

36 Bier, E. A., Stone, M., Pier, K., Buxton, W., and DeRose, T. Toolglass and

magic lenses: the see-through interface. In Proc. of SIGGRAPH'93, 73-80.

37 Kurtenbach, G. and Buxton, W. The limits of expert performance using

hierarchic marking menus. In Proc. of CHI'93, 482-487.

38 Schöning, J., Rohs, M., et al. Using Mobile Phones to Spontaneously

Authenticate and Interact withMulti-touch Surfaces. In In PPD'08.
39 Gellersen, H., et al. Supporting device discovery and spontaneous interaction

with spatial references. J. of Personal & Ubiquitous Computing, 13, 4 (May '09).

40 Hassan, N., Rahman, M., Irani, P., and Graham, P. Chucking: A One-Handed

Document Sharing Technique. In Proc. of INTERACT'09.

41. Nacenta, M. A., et al. There and Back Again: Cross-Display Object

Movement in Multi-Display Environments. Human-Computer Interaction, 24(1),

170-229.

42. Elrod, S., et al. Liveboard: a large interactive display supporting group
meetings, presentations and remote collaboration. In Proc. Of CHI’92.

43. Schmidt, D. PhoneTouch: a technique for direct phone interaction on surfaces.

In Proc. of UIST’10.

